Erwartungswert, Würfel < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:35 Di 17.09.2013 | Autor: | starki |
Aufgabe | Es wird 2 Mal fair gewürfelt. Sei X die Differenz zwischen dem ersten und dem zweiten Wurf. Bestimme (auf möglichst einfache Weise) Erwartungswert und Streuung von X! |
Also in der Lösung steht erstmal folgendes (Aufgabe 83):
(siehe: http://math-www.uni-paderborn.de/~walter/teachingSS07/EinfuehrungInDieStochastik/blatt15Muster.pdf)
=================
Sei Y das Ergebnis eines Wurfs. Es gilt
E(Y) = [mm] \frac{1 + 2 + ... + 6}{6} [/mm] = [mm] \frac{7}{2},
[/mm]
[mm] E(Y^2) [/mm] = [mm] \frac{1 + 4 + ... + 36}{36} [/mm] = [mm] \frac{91}{6}
[/mm]
und damit [mm] \sigma^2(Y) [/mm] = [mm] E(Y^2) [/mm] - [mm] E(Y)^2 [/mm] = [mm] \frac{35}{12} [/mm] Sei X = [mm] X_1 [/mm] - [mm] X_2, [/mm] wo [mm] X_i [/mm] das Ergebnis des i-ten Wurfs ist. [mm] X_{1,2} [/mm] sind unabhängig und haben beide den Erwartungswert [mm] E(X_i) [/mm] = [mm] \frac{7}{2} [/mm] und die Varianz [mm] \sigma^2(X_i) [/mm] = [mm] \frac{35}{12}. [/mm] Es folgt
E(X) = [mm] E(X_1 [/mm] - [mm] X_2) [/mm] = [mm] E(X_1 [/mm] - [mm] X_2) [/mm] = [mm] E(X_1) [/mm] - [mm] E(X_2) [/mm] = 0
und wegen der Unabhängigkeit
[mm] \sigma^2(X) [/mm] = [mm] \sigma^2(X_1 [/mm] - [mm] X_2) [/mm] = [mm] \sigma^2(X_1) [/mm] + [mm] \sigma^2(-X_2) [/mm] = [mm] sigma^2(X_1) [/mm] + [mm] sigma^2(X_2) [/mm] = [mm] \frac{35}{6}
[/mm]
==================
Ich hab leider nicht ganz verstanden, warum sie diesen Weg nehmen... Weil ich hätte das jetzt auf die Art und Weise gemacht:
Differenz | Anzahl
0 | 6
1 | 10
2 | 8
3 | 6
4 | 4
5 | 2
Macht E(X) = [mm] \frac{70}{36}
[/mm]
Und das ist was anderes als im Ergebnis...
|
|
|
|
Eigentlich hast du richtig gerechnet, aber:
Du siehst als Differenz zwischen zwei Würfen den Augenabstand an, z.B. beim Ergebnis (3|5) und bei (5|3) den Abstand 2. Durch die "Musterlösung" wird aber erkennbar, dass das so nicht gemeint ist, sondern:
(3|5) ---> 5-3=2, aber (5|3) ---> 3-5 = -2 (negativ).
Jetzt wird klar: Zu jedem Ergebnis gibt es ein symmetrisches Ergebnis, so dass sich die die Differenzen - mal positiv, mal negativ - aufheben und sich als Erwartungs- oder Durchschnittswert 0 ergibt.
Auch die Varianz berechnet sich nun anders, nämlich als Abstandsquadrat von 0 und nicht von 70/36, so dass du nach Kürzen 35/6 erhältst.
|
|
|
|