Erwartungswert beim Roulette < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beim Roulette gibt es 18 schwarze und 18 rote Felder plus die Null. Sie setzen jede Runde auf "schwarz“. Sie beginnen mit 100 Euro und verdoppeln Ihren Einsatz solange Sie verlieren.
a) Wie hoch ist Ihr Gesamtverlust, wenn nach n Runden nie schwarz“ gekommen ist?
b) Wie hoch ist Ihr Gewinn, wenn nach n Runden zum ersten Mal schwarz kommt?
c) Nach wie vielen Runden ist Schluss, wenn der Maximaleinsatz 10 000 Euro ist?
d) Wenn Sie diese Strategie bis zum Maximaleinsatz durchhalten, was ist die
Wahrscheinlichkeit, dass Sie gewinnen bzw. verlieren? Was ist der Erwartungswert für Ihren Gewinn? |
Hallo,
es geht mir nur um d), und hier auch nur um den Erwartungswert. Bei den anderen Fragen komme ich auf die gleichen Ergebnisse wie in der Musterlösung.
Die Musterlösung sagt, der Erwartungswert sei [mm] \mu [/mm] = -20,5.
Da die Antwort auf c) "7" lautet und im Fall eines Gewinnes unter'm Strich ja immer nur 100 Euro zu gewinnen sind, lautet m.E. die Formel für den Erwartungswert:
[mm] \mu [/mm] = [mm] (\bruch{19}{37})^1(-100) [/mm] + [mm] (\bruch{19}{37})^2(-100-200) [/mm] + ... + [mm] (\bruch{19}{37})^7(-100-200-400-800-1600-3200-6400) [/mm] + [mm] (\bruch{19}{37})^0 \bruch{18}{37} [/mm] 100 + ... + [mm] (\bruch{19}{37})^6 \bruch{18}{37} [/mm] 100
Für die bessere Eingabe im Taschenrechner:
[mm] \mu [/mm] = [mm] \bruch{19}{37}(-100 [/mm] + [mm] \bruch{19}{37}(-300 [/mm] + [mm] \bruch{19}{37}(-700 [/mm] + [mm] \bruch{19}{37}(-1500 [/mm] + [mm] \bruch{19}{37}(-2300 [/mm] + [mm] \bruch{19}{37}(-3900 [/mm] + [mm] \bruch{19}{37}(-7100 [/mm] + [mm] \bruch{19}{37}(-13500)))))))) [/mm] + [mm] \bruch{18}{37} [/mm] (100 + [mm] \bruch{19}{37}(100 [/mm] + [mm] \bruch{19}{37}(100 [/mm] + [mm] \bruch{19}{37}(100 [/mm] + [mm] \bruch{19}{37}(100 [/mm] + [mm] \bruch{19}{37}(100 [/mm] + [mm] \bruch{19}{37} [/mm] 100)))))) = -516,26
Weiß jemand weiter?
Danke und Gruß,
Martin
|
|
|
|
Hiho,
> Da die Antwort auf c) "7" lautet und im Fall eines Gewinnes
> unter'm Strich ja immer nur 100 Euro zu gewinnen sind,
> lautet m.E. die Formel für den Erwartungswert:
>
> [mm]\mu[/mm] = [mm](\bruch{19}{37})^1(-100)[/mm] +
> [mm](\bruch{19}{37})^2(-100-200)[/mm] + ... +
> [mm](\bruch{19}{37})^7(-100-200-400-800-1600-3200-6400)[/mm] +
> [mm](\bruch{19}{37})^0 \bruch{18}{37}[/mm] 100 + ... +
> [mm](\bruch{19}{37})^6 \bruch{18}{37}[/mm] 100
Dein Erachten ist falsch, du denkst viel zu kompliziert.
Du verlierst im Fall von 7 Niederlagen in Folge deinen gesamten Einsatz, in jedem anderen Fall gewinnst du 100€
Dein Erwartungswert ist also: $100*(1 - [mm] P(\text{7 Niederlagen in Folge})) [/mm] - [mm] 12700*P(\text{7 Niederlagen in Folge}) [/mm] = [mm] 100\left(1-\left(\frac{19}{37}\right)^7\right) [/mm] - [mm] 12700*\left(\frac{19}{37}\right)^7 \approx [/mm] -20,52$
Gruß,
Gono
|
|
|
|