www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert berechnen
Erwartungswert berechnen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 28.05.2015
Autor: Audin

Aufgabe
Bestimmen Sie für die folgenden beiden Situationen jeweils $E(X)$, $E(Y)$,$V(X)$, $V(Y)$, $E(XY)$, $Cov(X,Y)$ und [mm] $\rho_{X,Y}$. [/mm]

Was können Sie über die Unabhängigkeit und die Korreliertheit von $X$ und $Y$ sagen. Begründen Sie Ihre Aussage!

Es werden zwei faire, sechsseitige Würfel geworfen. [mm] $X_{i}$,$ [/mm] i=1,2$ gebe die jeweilige geworfene Augenzahl an. Wir betrachten nun die geworfene Augensumme und die geworfene Augendifferenz, also [mm] $X=X_{1}+X_{2}$ [/mm] und [mm] $Y=X_{1}-X_{2}$. [/mm]



Die Erwartungswerte für X,Y sehen folgendermaßen aus:


[mm] $E\left(X\right)=2\cdot\frac{1}{36}+3\cdot\frac{2}{36}+4\cdot\frac{3}{36}+5\cdot\frac{4}{36}+6\frac{5}{36}+7\cdot\frac{6}{36}+8\cdot\frac{5}{36}+9\cdot\frac{4}{36}+10\cdot\frac{3}{36}+11\cdot\frac{2}{36}+12\cdot\frac{1}{36}$ [/mm]

[mm] $=&\frac{252}{36}$ [/mm]

$=7$

[mm] $E\left(Y\right)&= \left(-5\right)\cdot\frac{1}{36}+\left(-4\right)\cdot\frac{2}{36}+\left(-3\right)\cdot\frac{3}{36}+\left(-2\right)\cdot\frac{4}{36}+\left(-1\right)\cdot\frac{5}{36}+0\cdot\frac{6}{36}+1\cdot\frac{5}{36}+2\cdot\frac{4}{36}+3\cdot\frac{3}{36}+4\cdot\frac{2}{36}+5\cdot\frac{1}{36}$ [/mm]

$=0 $

[mm] $E\left(XY\right)=&\sum_{x=2}^{10}\sum_{y=-5}^{5}\left(x\cdot y\right)\cdot P\left(X=x,Y=y\right)$ [/mm]

Und hier komme ich irgendwie nicht weiter.
Wie kann ich nun [mm] $E\left(XY\right)$ [/mm] berechnen?
Eine Möglichkeit bestünde sicher darin, für jedes einzel Ereigniss die Wkt. zu berechnen also alle [mm] P\left(X=x,Y=y\right) [/mm] und das ganze dann zu berechnen. Das scheint mir aber etwas aufwendig zu sein.

Gibt es da irgendwie eine "einfachere" bzw. bessere Lösung?

Mfg. Audin



        
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Fr 29.05.2015
Autor: hippias

Mal angenommen es gilt $X=8$ und $Y=-2$. Was kannst Du dann ueber [mm] $X_{1}$ [/mm] und [mm] $X_{2}$ [/mm] aussagen? Verallgemeinere dies auf $X=x$ und $Y=y$. Damit laesst sich $P(X=x, Y=y)$ ganz gut berechnen.

Bezug
                
Bezug
Erwartungswert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Fr 29.05.2015
Autor: Audin


> Mal angenommen es gilt [mm]X=8[/mm] und [mm]Y=-2[/mm]. Was kannst Du dann
> ueber [mm]X_{1}[/mm] und [mm]X_{2}[/mm] aussagen?

Dann weiss ich, dass gelten muss:

[mm] X_1=3 [/mm] und [mm] X_2=5 [/mm]

>Verallgemeinere dies auf

> [mm]X=x[/mm] und [mm]Y=y[/mm].

Allgemein wäre dann

[mm] X_1=\frac{x+y}{2} [/mm]

[mm] X_2=\frac{x-y}{2} [/mm]

> Damit laesst sich [mm]P(X=x, Y=y)[/mm] ganz gut
> berechnen.  

So ganz sehe ich noch nicht worauf das hinauslaufen soll :/





Bezug
                        
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Fr 29.05.2015
Autor: rmix22

E(X.Y)=E(x)*E(Y) gilt ja leider nur bei unabhängigen Ereignissen, aber vielleicht hilft

[mm] $X*Y=\left(X_1+X_2\right)*\left(X_1-X_2\right)=X_1^2-X_2^2$ [/mm]


Bezug
                                
Bezug
Erwartungswert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Di 02.06.2015
Autor: luis52


> E(X.Y)=E(x)*E(Y) gilt ja leider nur bei unabhängigen
> Ereignissen,

Auch fuer unkorrelierte *Zufallsvariablen* ...

Bezug
                        
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Sa 30.05.2015
Autor: hippias


> > Mal angenommen es gilt [mm]X=8[/mm] und [mm]Y=-2[/mm]. Was kannst Du dann
> > ueber [mm]X_{1}[/mm] und [mm]X_{2}[/mm] aussagen?
>
> Dann weiss ich, dass gelten muss:
>  
> [mm]X_1=3[/mm] und [mm]X_2=5[/mm]
>  
> >Verallgemeinere dies auf
> > [mm]X=x[/mm] und [mm]Y=y[/mm].
>  
> Allgemein wäre dann
>
> [mm]X_1=\frac{x+y}{2}[/mm]
>  
> [mm]X_2=\frac{x-y}{2}[/mm]
>  
> > Damit laesst sich [mm]P(X=x, Y=y)[/mm] ganz gut
> > berechnen.  
>
> So ganz sehe ich noch nicht worauf das hinauslaufen soll
> :/
>  

Zum Beispiel darauf: Weil wir jetzt wissen, dass $(X,Y)= [mm] (8,-2)\iff (X_{1},X_{2})= [/mm] (3,5)$ gilt, folgt $P(X=8,Y=-2)= [mm] P(X_{1}=3, X_{2}=5)$; [/mm] letzteres ist ja die Wahrscheinlichkeit, dass Wuerfel $1$ eine $3$ und Wuerfel $2$ eine $5$ zeigtt, welche Wahrscheinlichkeit Du also leicht bestimmen kannst.

Wendest Du dies auf den allgemeinen Fall an, so kannst Du den Erwartungswert berechnen.

rmix' Loesungsvariante ist nateurlich geschickter, aber Dein Loesungsansatz war ja ein anderer.

>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de