www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Erwartungswert berechnen
Erwartungswert berechnen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert berechnen: Tipp oder Idee
Status: (Frage) beantwortet Status 
Datum: 12:09 Di 09.02.2010
Autor: james_kochkessel

Aufgabe
[mm] F(X)=\begin{cases} 0, & \mbox{für } x \mbox{<1 } \\ {0,6} & \mbox{für } \mbox{ 1 <= x < 3} \\ {0,8} & \mbox{für } \mbox{ 3 <= x < 5} \\ 1, & \mbox{für } \mbox{ 5 <= x} \end{cases} [/mm]

Hi, bei einer Aufgabe soll man da den Erwartungswert berechnen, aber ich komm einfach nicht drauf, wie man den hier berechnet.

Falls jemand eine Idee hat, wäre ich ihm sehr dankbar.

Lg kochkessel

        
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Di 09.02.2010
Autor: abakus


> [mm]F(X)=\begin{cases} 0, & \mbox{für } x \mbox{<1 } \\ {0,6} & \mbox{für } \mbox{ 1 <= x < 3} \\ {0,8} & \mbox{für } \mbox{ 3 <= x < 5} \\ 1, & \mbox{für } \mbox{ 5 <= x} \end{cases}[/mm]
>  
> Hi, bei einer Aufgabe soll man da den Erwartungswert
> berechnen, aber ich komm einfach nicht drauf, wie man den
> hier berechnet.
>  
> Falls jemand eine Idee hat, wäre ich ihm sehr dankbar.
>  
> Lg kochkessel

Hallo,
durch genaues Hinschauen sieht man, dass es sich um eine diskrete ZG handelt, die den Wert 1 mit p=0,6, den Wert 3 mit p=0,2 und den Wert 5 ebenfalls mit p=0,2 annimmt.
Gruß Abakus


Bezug
                
Bezug
Erwartungswert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:25 Di 09.02.2010
Autor: james_kochkessel

Ah vielen dank, dann ist E(X)=2,2

Bezug
        
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Di 09.02.2010
Autor: gfm

Allgemein gilt:

[mm] E(X)=\integral_\Omega X(\omega)dP(\omega) [/mm]

durch die Subsitution [mm] \omega=X^{-1}(x) [/mm] gelangt man zur Integration im Zustandraum von X:

[mm] E(X)=\integral_{X(\Omega)}xdF_X(x) [/mm]

[mm] F_X [/mm] ist die Verteilungsfunktion von X und definiert als

[mm] F_X(x)=P({X\le x}), [/mm] welches ein W-Maß im Zustandsraum von X definiert.

W-Maße sind endlich, daher auch [mm] \sigma [/mm] - endlich. Somit exisitert eine Zerlegung von [mm] F_X [/mm] in einen fast überall differenzierbaren Anteil, der mit einer Dichte [mm] f_X [/mm]  bezüglich des normalen "dx" und eines diskreten Anteils geschrieben werden kann:

[mm] dF_X(x) [/mm] = [mm] f_X(x)dx [/mm] + [mm] \summe_{i=1}^{\infty}\Delta_i 1_{x_i}(dx) [/mm]

[mm] \Delta_i 1_{x_i}(dx) [/mm] ist dabei das mit [mm] \Delta_i [/mm] multiplizierte Dirac-Maß. [mm] \Delta_i [/mm] ist der Sprung den [mm] F_X [/mm] an der Stelle [mm] x_i [/mm] macht. Wenn bei der Integration das "dx über [mm] x_i [/mm] hinwegläuft" entsteht einfach der Anteil [mm] g(x_i)\Delta_i [/mm] wenn man eine Funktion g integriert.

Das kann man auch noch hübscher schreiben mit einen differenzierbaren monotonen Anteil für [mm] F_X [/mm] und einem Treppenfunktionsanteil, der besagte Sprünge an den [mm] x_i [/mm] macht.

Dein [mm] F_X [/mm] ist so eine Treppenfunktion. Somit wird aus dem Integral für den Erwartungswert die Summe über die Produkte aus [mm] x_i [/mm] und den Sprüngen.

LG

gfm

Bezug
        
Bezug
Erwartungswert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 13.05.2010
Autor: PythagorasSie

Hallo,
hab hier auch noch eine Frage dazu,
wie komm ich denn auf die Werte für p von 3 und 5 ?
Hab nämlich ein ähnliches Beispiel zu rechnen und weiß nicht so richtig, wie ich das aus der Angabe herauslesen kann.
Lg, danke,
PythagorasSie

Bezug
                
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Do 13.05.2010
Autor: abakus


> Hallo,
> hab hier auch noch eine Frage dazu,
> wie komm ich denn auf die Werte für p von 3 und 5 ?
> Hab nämlich ein ähnliches Beispiel zu rechnen und weiß
> nicht so richtig, wie ich das aus der Angabe herauslesen
> kann.
>  Lg, danke,
> PythagorasSie

Hallo,
dann mache es mal umgedreht. Eine Zufallsgröße X nehme nur die 3 Werte 3, 7 und 10 an, und zwar mit den Wahrscheinlichkeiten 0,1; 0,7 bzw. 0,2.
Fühlst du dich in der Lage, hiervon die Funktion F(x) aufzustellen?
Gruß Abakus


Bezug
                        
Bezug
Erwartungswert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Do 13.05.2010
Autor: PythagorasSie

Nein, nicht wirklich .

Nehme ich immer die Differenz für p(x) zwischen zwei Werten?
Sprich, von p(x)=0 auf p(x)= [mm] \bruch{ 1 }{ 10 } [/mm]  
und von  [mm] \bruch{ 1 }{ 10 } [/mm]   auf    [mm] \bruch{ 7 }{10 } [/mm] ?


Bezug
                                
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Fr 14.05.2010
Autor: Blech

Hi,

[mm] $F(x)=P(X\leq [/mm] x)$

was ist dann F(2), F(3), F(4) und F(7)?

ciao
Stefan

Bezug
                                        
Bezug
Erwartungswert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Fr 14.05.2010
Autor: PythagorasSie

Ich sitz da leider grad wirklich voll auf der leitung. Die Formel F(x)=P(X [mm] \le [/mm] x) versteh ich schon, nur weiß ich nicht wie ich auf die Zahlenwerte von p(x) komme.

Mein Beispiel geht ca. so:

Bestimmen Sie die Werte der Wahrscheinlichkeitsfunktion px(n) für alle n [mm] \varepsilon \IN [/mm]

F(x)=  .... 0 für x<6
          ....  [mm] \bruch{ 1 }{ 2 } [/mm] für 6 [mm] \le [/mm] x < 7
          .... 1 für x [mm] \ge [/mm] 7

und meine Lösung wäre jetz gewesen, dass ich einfach schreibe, p= [mm] \bruch{ 1 }{ 2 } [/mm] für n=6 und p= [mm] \bruch{ 1 }{ 2 } [/mm] für n=7,
weil 1-  [mm] \bruch{ 1 }{ 2 } [/mm] =  [mm] \bruch{ 1 }{ 2 } [/mm]
stimmt das oder wie berechne ich p(x)?

danke, lg, PythagorasSie

Bezug
                                                
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Fr 14.05.2010
Autor: Cybrina

Hallo,

du solltest dir mal klarmachen, was P und F eigentlich sind. P(x) gibt die Wahrscheinlichkeit für den Wert x an. F(x) dagegen gibt sozusagen die summierte Wkt. bis zum Wert x an, also wie hoch die Wkt. ist, dass höchstens x herauskommt.
Wenn jetzt F(x)=0 für x<6 heißt das für alle Werte <6 ist die Wkt. 0, d.h. für [mm] x\in\IN [/mm] ist p(0)=0, p(1)=0, ... p(5)=0.
Wenn [mm] F(x)=\bruch{1}{2} [/mm] für [mm] 6\leqslant [/mm] x<7, dann bedeutet das, dass [mm] p(0)+p(1)+...+p(6)=\bruch{1}{2} [/mm] und da ja alles bis p(5) 0 ist also [mm] p(6)=\bruch{1}{2} [/mm]
Deine Aufgabe ist übrigens P für alle nat. Zahlen anzugeben, nicht nur für 6 und 7.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de