www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert maximieren
Erwartungswert maximieren < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert maximieren: Ansatz
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 09.06.2009
Autor: wiggle

Aufgabe
Maximiere den Erwartungswert einer Funktion  

Ich habe hier ein theoretisches Modell, welches ich nicht ganz verstehe:
[mm] \pi [/mm] und M seien Funktionen abhängig von K.
[mm] \pi\left(K\right)=M\left(K\right)-cK [/mm]
Die Ableitung von M lautet:
[mm] \frac{dM}{dK}=m [/mm] ; Bedingung erster Ordnung lautet:
c=m (Ableitung von [mm] \pi [/mm] gleich null gesetzt und c auf die andere Seite), alles gut soweit!

Jetzt kommt die Unsicherheit in Form eines Erwartungswertes und Störterms dazu, also die Ausgangsfunktion lautet jetzt :
[mm] \pi\left(K\right)=E\left[M\left(K-\varepsilon\right)-cK\right] [/mm]
Jetzt steht hier: die Bedingung erster Ordnung lautet:
[mm] c=E\left[m\left(K-\varepsilon\right)\right] [/mm]

Was hier anscheinend passiert ist: Der Autor hat die Ableitung "in den Erwartungswert gezogen"; also hat er den Erwartungswert maximiert (hinreichende Bedingung, also 2. Ableitung brauchen wir nicht), indem er einfach das "innere" des Erwartungswertes abgeleitet hat (also die Funktion in den eckigen Klammern hat er differenziert und den E-Wert einfach beibehalten)!

Meine Frage ist, wann man das darf? Welche Voraussetzungen müssen dafür erfüllt sein?
Habe schon kräftig im Internet geschaut, wie man Erwartungswerte allgemein maximiert oder differenziert, das hat was mit dem Satz von Fubini zu tun glaube ich, aber mehr weiß ich nicht...
Kann man da irgendwas finden, wie man allgemein E-Werte Differenziert?
Irgendwelche Regeln, Kochrezepte?
Danke für die Hilfe!








        
Bezug
Erwartungswert maximieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 10.06.2009
Autor: vivo

Hallo,

es soll das Maximum der Funktion [mm] $\pi$ [/mm] gefunden werden. Deshalb wird die Funktion [mm] $\pi$ [/mm] differenziert.

Warum man Erwartungswert und Ableitung vertauschen darf und unter welchen voraussetzungen, dass findest du zum Beispiel hier:

[]Achim Klenke Wahrscheinlichkeitstheorie S. 143


wenn du beachtest dass der Erwartungswert ein Integral ist.

gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de