www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert und Varianz
Erwartungswert und Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:35 Fr 29.12.2006
Autor: laryllan

Aufgabe
Seien [tex]X_{1},...,X_{n} [/tex] unabhängige Kopien der Zufallsvariablen X. Diese nimmt Werte in [tex] \IZ [/tex] an. Ferner existieren der Erwartungswert E(X) und die Varianz Var(X).
[tex]S_{n} = X_{1} + ... + X_{n} [/tex].

Zeigen sie: Falls E(X) [mm] \not= [/mm] 0, dann ist [mm] P(S_{n} [/mm] = 0 für endlich viele n) = 1.

Aloa zusammen,

Ich brüte jetzt schon ne Weile über dieser Aufgabe. Rein vom Prinzip her ist es klar.

Wenn der Erwartungswert irgendwo links bzw. rechts von 0 liegt, und es eine Varianz gibt, dann summier ich mit [mm] S_{n} [/mm] gerade alle Werte der n unabhängigen Kopien auf, und erhalte gerade 0. Ich muss halt n nur gerade so wählen, dass die um die Varianz veränderten Erwartungswerte zusammengezogen 0 ergeben.

Also anders ausgedrückt:

Wenn ich [mm] S_{n} [/mm] betrachte kann ich diese Summe ja auch umschreiben:

[tex]S_{n} = X_{1} + ... + X_{n} = (E(X_{1}) + Var(X_{1})) + ... + (E(X_{n}) + Var(X_{n})) )[/tex]

Da die [mm] X_{i} [/mm] ja unabhängige Kopien von X sind, ist auch der Erwartungswert immer der gleiche. Somit kann ich diese Summe nochmal umschreiben:

[tex]S_{n} = X_{1} + ... + X_{n} = n*E(X) + \summe_{i=1}^{n} Var(X_{i}) [/tex]. Da die Zufallsvariable nach Voraussetzung Werte in [tex] \IZ [/tex] annehmen kann, dürfte es prinzipiell kein Problem geben. Wenn E(X) [mm] \not= [/mm] 0, dann lässt sich bestimmt ein n finden, so dass [tex]\summe_{i=1}^{n} Var(X_{i}) = - E(X) [/tex] ist.

Allerdings habe ich keine Ahnung, wie ich das gescheit begründen soll. Weil so wie ich es aufgeschrieben habe, scheint mir da doch etwas zu fehlen.

Vielleicht weiß ja einer von Euch Rat?

Namárie,
sagt ein Lary, wo hofft, dass alle ein gutes Weihnachtsfest hatten, und gut ins neue Jahr rutschen.

        
Bezug
Erwartungswert und Varianz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 05.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de