www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert und Varianz
Erwartungswert und Varianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:06 So 24.05.2009
Autor: ToniKa

Aufgabe
Es sei X eine ZV mit Erwartungswert E(X) und Varianz V (X). Zeigen Sie E(cX+a) =
cE(X) + a und V (cX + a) = c2V (X).
Unterscheiden Sie jeweils die Fälle, dass X (a) eine diskrete ZV, (b) eine kontinuierliche ZV ist.

Hallo,
das ist meine Lösung zu (a): E(cX+a)= [mm] \integral_{-\infty}^{\infty}{(cX+a)*f(x)dx}=c \integral_{-\infty}^{\infty}{a+x*f(x)dx}= c\integral_{-\infty}^{\infty}{a+E(X)}=cE(x) [/mm] +a (ich weiss aber nicht, ob ich die Variable a so stehen lassen kann)
Und für Varianz habe ich:
V(cX+a)= [mm] \integral_{-\infty}^{\infty}{(cX+a)^2 f(x)-(E(cX+a))^2}= c^2 \integral_{-\infty}^{\infty}{x^2f(x) +a^2-(c(E(X+a))^2}=c^2 \integral_{-\infty}^{\infty}{x^2f(x)+a^2-((c^2E(x)^2)+a^2)}=c^2V(x) [/mm]
Ich weiss nicht, wie ich das für diskrete Zufallsvariable machen könnte, also für (b).
Ich wäre für jede Korrektur und Tipp für (b) sehr dankbar.
Ich bedanke mich im Voraus.

        
Bezug
Erwartungswert und Varianz: Einige Antworten
Status: (Antwort) fertig Status 
Datum: 15:44 So 24.05.2009
Autor: weightgainer

Hallo ToniKa,
zunächst mal zum Erwartungswert bei den kontinierlichen Verteilungen:

[mm]E(cX+a) = \integral_{-\infty}^{\infty}{(cx+a)*f(x) dx}=c*\integral_{-\infty}^{\infty}{x*f(x) dx}+a*\integral_{-\infty}^{\infty}{f(x) dx}[/mm]
So lauten die korrekten Umformungsschritte. Das erste Integral ist jetzt gerade E(X), und das zweite Integral muss per Definition genau 1 ergeben. Deswegen steht da letztlich die Behauptung.

Die Lösung für die Varianz findest du sogar bei []Wikipedia. Das ist unabhängig von diskret/kontinuierlich, da du hier den Zusammenhang zwischen Varianz und Erwartungswert benutzt.

Im diskreten Fall ist allgemein [mm]E(X)=\summe_{i=1}^{n}(P(X=i)*i)[/mm].
Die Rechnung sieht dann fast so aus wie mit dem Integral:
[mm]E(cX+a)=\summe_{i=1}^{n}(P(X=i)*(ci+a))=c*\summe_{i=1}^{n}(P(X=i)*i) + a*\summe_{i=1}^{n}P(X=i)[/mm].
Die erste Summe ist gerade E(X), die zweite ergibt gerade 1 und damit ergibt sich die Behauptung.

Gruß,
weightgainer




Bezug
                
Bezug
Erwartungswert und Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 So 24.05.2009
Autor: ToniKa

Hallo weightgainer,
ich möchte mich bei Dir für Deine Korrektur  bedanken

Gruß
ToniKa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de