www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert und Varianz
Erwartungswert und Varianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: Wie is das denn hier verteilt?
Status: (Frage) beantwortet Status 
Datum: 11:20 Di 08.11.2011
Autor: mwieland

Aufgabe
Die Eurozone hat 17 Mitgliedsstaaten. Wir betrachten einjährige Staatsanleihen: 12 Staaten bieten
3% Zinsen, 3 Staaten 5% und je einer 7% bzw 9%.
(a) Wir kaufen unsere Staatsanleihe uniform von einem Mitgliedsstaat. Berechnen Sie Erwartungswert
und Varianz des Zinssatzes der zufälligen Anleihe.

Hallo miteinander!

Habe hier irgendwie Probleme:

Um E(x) bzw. Var(X) auszurechnen, muss ich ja wissen wie das verteilt ist, da ja bei den verschiedenen Verteilungen versch. Formeln für diese 2 Werte angewendet werden, oder?

Kann mir bitte jemand sagen, welche Verteilung von X hier vorliegt, bzw. wie man darauf kommt?

habe den erwartungswert jetzt einfach mal so berechnet, dass ich mir die Werte der Zufallsvariablen mit der jeweiligen Wahrscheinlichkeit multipliziert habe und dann von allem zufallsvariablen die Summe daraus gebildet habe.

also E(X) = [mm] x_{1}*P(x_{1})+x_{2}*P(x_{2})+...+x_{i}*P(x_{i}) [/mm]

stimmt diese berechnung so?

dank und lg

markus

        
Bezug
Erwartungswert und Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Di 08.11.2011
Autor: Diophant

Hallo,

> Kann mir bitte jemand sagen, welche Verteilung von X hier
> vorliegt, bzw. wie man darauf kommt?

Es steht im Prinzip da:

>  (a) Wir kaufen unsere Staatsanleihe uniform von einem
> Mitgliedsstaat.

Also ich verstehe das so, dass die einzelnen Staaten uniform, also gleichverteilt sind. Nur dass es eben jeweils mehrere Staaten mit dem gleichen Zinssatz gibt.

Dein Ansatz für den Erwartungswert ist völlig korrekt, bei der Varianz musst du m.A. nach den Schätzer für die Varianz einer Stichprobe verwenden.

Gruß, Diophant

Bezug
                
Bezug
Erwartungswert und Varianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 08.11.2011
Autor: mwieland


> Dein Ansatz für den Erwartungswert ist völlig korrekt,
> bei der Varianz musst du m.A. nach den Schätzer für die
> Varianz einer Stichprobe verwenden.

habe hier gleich unter dem erwartungswert für die varianz folgende formel:

Var(X) = [mm] x_{1}^{2}*P(x_{1})+...+x_{i}^{2}*P(x_{i}) [/mm]

stimmt das auch so?

dank und lg

Bezug
                        
Bezug
Erwartungswert und Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Di 08.11.2011
Autor: Diophant

Hallo,

> habe hier gleich unter dem erwartungswert für die varianz
> folgende formel:
>  
> Var(X) = [mm]x_{1}^{2}*P(x_{1})+...+x_{i}^{2}*P(x_{i})[/mm]
>  
> stimmt das auch so?

nein, das kann so nicht lauten. Es werden ja die gewichteten Quadrate der Differenzen zum Erwartungswert aufaddiert.

So muss es aussehen:

[mm] Var(x)=\summe_{i=1}^{n}(x_i-E(X))^2*P(X=x_i) [/mm]

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de