www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Erwartungswerte
Erwartungswerte < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswerte: Bedingte Erwartungswerte
Status: (Frage) überfällig Status 
Datum: 15:58 So 02.03.2008
Autor: momo0

ich habe diese frage in keinem forum auf anderen internetseiten gestellt.

servus...

...ich lese gerade das paper „incentives and prosocial behavior“ von bénabou und tirole.

eigentlich super interessant, aber nicht gerade einfach. Hab eine frage – wenn mir jemand helfen könnte wäre super!!


in dem paper gilt [mm] \vektor{v_{a}\\v_{y}}\sim [/mm] N [mm] \vektor{\bar{v_{a}}\\\bar{v_{y}}}\pmat{\sigma_a^2&\sigma_{ay}\\\sigma_{ay}&\sigma_y^2} [/mm]


hoffe das ist so verständlich - ist meine erste mail hier - bin also noch kein profi mit dem formelsystem!!:-) Soll einfach heißen, dass die variablen normalverteilt sind mit dem angegebenen mittelwerten und der angegebenen kovarianzmatrix.

weiterhin gilt [mm] v_{a}+yv_{y}=C'(a)-r(a,y) [/mm]


wobei [mm] C(a)=ka^2/2 [/mm] und [mm] r(a,y)\equiv\bar\mu_a\bruch{\partial E (v_{a}|a,y)}{\partial a } [/mm]  - [mm] \bar\mu_y\bruch{\partial E (v_{y}|a,y)}{\partial a } [/mm]   gilt.

Als standard ergebnis für normalverteilte zufallsvariablen soll sich nun


[mm] E(v_{a}|a,y) [/mm] = [mm] \bar v_{a}+ \rho(y)\cdot(ka-\bar v_{a}- \bar v_{y}y-r(a,y)) [/mm]

ergeben, wobei [mm] \rho(y) [/mm] als


[mm] \rho(y)\equiv\bruch{\sigma_a^2+y \sigma_{ay}}{\sigma_a^2+2y\sigma_{ay}+y^2\sigmay^2} [/mm]  definiert ist.


Ich weiß leider nicht wie die jungs auf dem ausdruck für [mm] \rho(y) [/mm] kommen!!

ich hatte mir gedacht, dass durch die normalverteilten variablen ja das standardmodell der linearen einfachregression gültig ist - wie die jungs auf den ausdruck für [mm] \rho(y) [/mm] kommen hab ich aber leider keine idee!!

wenn mir jemand helfen könnte wäre super!!

danke im voraus und noch nen schönen sonntag!!

mo


        
Bezug
Erwartungswerte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Mo 10.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de