www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Erzeugende Elemente, Ordnung
Erzeugende Elemente, Ordnung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugende Elemente, Ordnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:04 So 19.02.2006
Autor: DAB268

Aufgabe
a) Wie viele erzeugende Elemente hat die Gruppe [mm] $(Z_{41}^{\*},\cdot [/mm] )$ der primen
Restklassen mod 41?
b) Hat [mm] $(Z_{41}^{\*},\cdot [/mm] )$ eine Untergruppe U der Ordnung $|U| =12$ ? (Begründung)

Hi.

Da 41 eine Primzahl ist, ist [mm] $Z_{41}^{\*}={1,2,\hdots,40}$ [/mm]

Also bei der a) hatte ich im Kopf, dass man wenn man ein erzeugendes Element e gefunden hat, alle anderen durch [mm] e^i [/mm] berechnen kann.
6 ist hierbei das kleinste erz. Element. somit müsste [mm] 6^2=36 [/mm] ebenfalls erzeugend sein. Maple sagt mir hier jedoch, dass es dies nicht ist.

Zu b)
Es sollte doch keine Untergruppe U geben mit |U|=12, da Lagrange besagt, dass wenn G eine Untergruppe besitzt, so gilt |U| teilt |G|

Bitte um Korrektur/Hilfe...

MfG
DAB268

        
Bezug
Erzeugende Elemente, Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 So 19.02.2006
Autor: Micha

Hallo!

> a) Wie viele erzeugende Elemente hat die Gruppe
> [mm](Z_{41}^{\*},\cdot )[/mm] der primen
>  Restklassen mod 41?
>  b) Hat [mm](Z_{41}^{\*},\cdot )[/mm] eine Untergruppe U der Ordnung
> [mm]|U| =12[/mm] ? (Begründung)
>  Hi.
>  
> Da 41 eine Primzahl ist, ist [mm]Z_{41}^{\*}={1,2,\hdots,40}[/mm]
>  
> Also bei der a) hatte ich im Kopf, dass man wenn man ein
> erzeugendes Element e gefunden hat, alle anderen durch [mm]e^i[/mm]
> berechnen kann.
>  6 ist hierbei das kleinste erz. Element. somit müsste
> [mm]6^2=36[/mm] ebenfalls erzeugend sein. Maple sagt mir hier
> jedoch, dass es dies nicht ist.

Muss ich noch nachprüfen!

> Zu b)
>  Es sollte doch keine Untergruppe U geben mit |U|=12, da
> Lagrange besagt, dass wenn G eine Untergruppe besitzt, so
> gilt |U| teilt |G|

Exakt, weil |G|= 40 und 12 teilt nich 40!

Gruß Micha ;-)

Bezug
        
Bezug
Erzeugende Elemente, Ordnung: zu a)
Status: (Antwort) fertig Status 
Datum: 16:49 So 19.02.2006
Autor: mathmetzsch

Hallo,

verwende dazu die Euler'sche Phi-Funktion. 41 ist primzahl. Damit ist die multiplikative Gruppe zyklisch von der Ordnung

[mm] m=40=2^{3}*5. [/mm] Die Anzahl ist dann

[mm] \varphi(m)=\varphi(2^{3})*\varphi(5)=4*4=16. [/mm]

Einverstanden?

Viele Grüße
Daniel

Bezug
                
Bezug
Erzeugende Elemente, Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 19.02.2006
Autor: DAB268

Soweit bin ich jetzt einverstanden, aber wie finde ich die erzeugenden Elemente ohne alle 40 Zahlen durchzugehen?

Bezug
                        
Bezug
Erzeugende Elemente, Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 19.02.2006
Autor: mathmetzsch

Hallo,

das sind ja dann gerade die Primitivwurzeln mod(41). Es gibt kein "schönes" Verfahren, um diese zu bestimmen. Da bleibt nichts anderes als Probieren, aber das war doch gar nicht verlangt oder?

Nachtrag: Eine Sache gibt es doch. Sei p Primzahl und g eine ganze Zahl g nicht kongruent 0 mod(p). g ist genau dann Primitivwurzel mod(p), wenn

[mm] g^{(p-1)/q} [/mm] nicht kongruent 1 mod(p) für alle Primteiler q|(p-1).

Aber auch hier musst du alle durchprobieren!

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de