www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Erzeugendensystem
Erzeugendensystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem: Idee
Status: (Frage) beantwortet Status 
Datum: 09:35 Sa 31.10.2009
Autor: AbraxasRishi

Aufgabe
Welche der folgenden n-tupel von Paaren rationaler Zahlen sind Erzeugendensystme des V.R. [mm] Q^2? [/mm]

((0,3),(-1,1),(4,2))...

Hallo!

Verwenden darf ich dabei nur die Definition von  Erzeugendensystem.

[mm] a,b\in [/mm] Q

[mm]\vektor{a\\b}=\frac{a+b}{3}\vektor{0\\3}-a\vektor{-1\\1}+0*\vektor{4\\2}[/mm]

So habe ich ja schon gezeigt, dass man jeden beliebigen Vektor in [mm] Q^2, [/mm] mit beliebigen Komponenten a,b ,auf mindestens eine Weise durch diese drei Vektoren erzeugen kann. Stimmt das bzw. gibt es noch einen anderen/leichteren Weg?

Und noch was möchte ich fragen, weil ich immer skeptisch bin ob ich den einfachsten Weg verwende: Wie kann man sagen, dass 3 Vektoren linear unabhängig sind, ohne ein Gleichungssystem zu lösen?

Vielen Dank für eure Hilfe!

Gruß

Angelika






        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Sa 31.10.2009
Autor: angela.h.b.


> Welche der folgenden n-tupel von Paaren rationaler Zahlen
> sind Erzeugendensystme des V.R. [mm]Q^2?[/mm]
>  
> ((0,3),(-1,1),(4,2))...
>  Hallo!
>  
> Verwenden darf ich dabei nur die Definition von  
> Erzeugendensystem.
>  
> [mm]a,b\in[/mm] Q
>  
> [mm]\vektor{a\\b}=\frac{a+b}{3}\vektor{0\\3}-a\vektor{-1\\1}+0*\vektor{4\\2}[/mm]
>  
> So habe ich ja schon gezeigt, dass man jeden beliebigen
> Vektor in [mm]Q^2,[/mm] mit beliebigen Komponenten a,b ,auf
> mindestens eine Weise durch diese drei Vektoren erzeugen
> kann. Stimmt das

Hallo,

ja, das ist richtig.


> bzw. gibt es noch einen anderen/leichteren
> Weg?

Manchmal, so auch hier, sieht man in der Menge sofort eine Basis des fraglichen Raumes, womit klar ist, daß es sich um ein Erzeugendensystem handelt.

Je nachdem, was Du kannst, kannst Du die Dimension des von den Vektoren aufgespannten Raumes auch am Rang der Matrix, die die Vektoren als Spalten enthält, ablesen.
In Deinem Fall wäre der Rang =2, [mm] \IQ^2 [/mm] hat die Dimension 2, also erezugt das system en Raum.

> Und noch was möchte ich fragen, weil ich immer skeptisch
> bin ob ich den einfachsten Weg verwende: Wie kann man
> sagen, dass 3 Vektoren linear unabhängig sind, ohne ein
> Gleichungssystem zu lösen?

Normalerweise mußt Du ein GS lösen. "Einfach so" sehen tut man das nur in speziellen Fallen, wie z.B. [mm] \vektor{ 1\\2\\3}, \vektor{5\\6\\0}, \vektor{7\\0\\0}. [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de