www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Erzeuger und Relation Quadrat
Erzeuger und Relation Quadrat < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeuger und Relation Quadrat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Fr 02.11.2012
Autor: rollroll

Aufgabe
Zeige, dass die Symmetriegruppe eines Quadrates von einer Drehung [mm] \pi [/mm] um 90° um den Mittelpunkt des Quadrates und einer Spiegelung [mm] \nu [/mm] erzeugt wird.  Finde alle Realtionen für diese Gruppe.

Zunächst zu dem Erzeuger der Gruppe.
Also eine Drehung um 90° (nach links) bewirkt ja die Permutation (14)(32), wenn die Ecken entgegengesetzt dem Uhrzeigersinn durchnummeriert werden (mit 1 unten links). Diese Drehung und eine beliebige Spiegelung sollen jetzt also die Symmetriegruppe des Quadrates erzeugen. Es gilt ja schonmal [mm] \nu^2 [/mm] = 1. (das Neutrale). Und die Drehung um 90° muss man ja 4-mal vollziehen um wieder id zu bekommen, dann wäre ja auch [mm] \pi^4 [/mm] =1. Also wäre [mm] \nu^2= \pi^4 [/mm] =1 . Und [mm] \pi^{-1} [/mm] bekommt man z.B. durch die Hintereinanderausfürhung von [mm] \nu \pi \nu. [/mm]
--> Q = [mm] <\nu, \pi [/mm] | [mm] \nu^2 [/mm] = [mm] \pi^4 [/mm] =1, [mm] \nu\pi\nu= \pi^{-1}. [/mm]

Ist hier was verwertbares dabei? Leider sieht mir das noch nicht wie ein Beweis aus...

        
Bezug
Erzeuger und Relation Quadrat: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Fr 02.11.2012
Autor: Schadowmaster

moin,

Fangen wir erstmal mit dem zu zeigenden Erzeugendensystem an, dafür hast du schon einige sehr schöne Sachen entdeckt (insbesondere die Ordnung deiner beiden Elemente).

Ich würde dir empfehlen jetzt folgendermaßen weiterzumachen:
1. Zeige: Die Menge $H := [mm] \{\pi,\pi^2,\pi^3,id\}$ [/mm] ist eine Untergruppe deiner gesuchten Gruppe und [mm] $\nu \notin [/mm] H$.

2. Folgere daraus, dass die folgenden Elemente paarweise verschieden sind:
[mm] $id,\pi,\pi^2,\pi^3,\nu,\nu\pi,\nu\pi^2,\nu\pi^3$ [/mm]

3. Wisse, dass deine gesuchte Gruppe genau 8 Elemente hat; da oben stehen sie.


lg

Schadow


Bezug
                
Bezug
Erzeuger und Relation Quadrat: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:46 Mo 05.11.2012
Autor: rollroll

Ok, das habe ich jetzt soweit gemacht, wie schreibe ich denn jetzt das Erzeugendensystem auf (so wie ich es in meinem 1.Post geschrieben hatte?) Wie das mit den Relationen gehen soll, weiß ich allerdings nicht...

Bezug
                        
Bezug
Erzeuger und Relation Quadrat: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:39 Di 06.11.2012
Autor: rollroll

Sind dann [mm] \pi^4 [/mm] und [mm] \mu^2 [/mm] auch schon Relationen, weil das Neutrale raus kommt?

Bezug
                                
Bezug
Erzeuger und Relation Quadrat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Di 06.11.2012
Autor: rollroll

Gibt's keine Ideen?

Bezug
                                
Bezug
Erzeuger und Relation Quadrat: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Do 08.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Erzeuger und Relation Quadrat: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 07.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Erzeuger und Relation Quadrat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Fr 02.11.2012
Autor: wieschoo


>  Zunächst zu dem Erzeuger der Gruppe.
>  Also eine Drehung um 90° (nach links) bewirkt ja die
> Permutation (14)(32), wenn die Ecken entgegengesetzt dem
> Uhrzeigersinn durchnummeriert werden (mit 1 unten links).

Eine Drehung ist ein 4-Zykel (1234). Du hast eine Spiegelung aufgeschrieben.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de