www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Euklidische Vektorräume
Euklidische Vektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidische Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:53 Mo 06.02.2012
Autor: Gnocchi

Aufgabe
Die Lösungsmenge eines linearen Gleichungssystems in n Unbestimmten über [mm] \IR [/mm] ist bekanntlich ein affiner Unterraum des [mm] \IR^{ n},d.h. [/mm] von de Form v+ U mit einem v [mm] \in \IR^{n} [/mm] und einem Untervektorraum U [mm] \subset \IR^{n}. [/mm] Umgekehrt seien jetzt im [mm] \IR^{n} [/mm] ein Vektor v und ein Untervektorraum U gegeben, U [mm] \perp [/mm] der Orthogonalraum bezüglich des jabonischen Skalarprodukts (v1,.....,vm) eine Basis von U [mm] \perp [/mm] und A die Matrix mit den zeilen v1 [mm] ^{t},....vm^{t}. [/mm] Zeigen Sie: Mit b:=Av gilt dann:
v+ U = Lös(A,b)

Wir haben ja nun A als Einheitsmatrix bloß, dass die Zeilen umgedreht sind.
ich weiß nun aber irgendwie nicht was ich genau zeigen soll. BZw. wie ich zeigen soll, dass v+U = Lös(A,b) ist.
Soll ich mir einfach mal ein v, U und A basteln und gucken was da evtl passiert?

        
Bezug
Euklidische Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 06:10 Mo 06.02.2012
Autor: angela.h.b.


> Die Lösungsmenge eines linearen Gleichungssystems in n
> Unbestimmten über [mm]\IR[/mm] ist bekanntlich ein affiner
> Unterraum des [mm]\IR^{ n},d.h.[/mm] von de Form v+ U mit einem v
> [mm]\in \IR^{n}[/mm] und einem Untervektorraum U [mm]\subset \IR^{n}.[/mm]
> Umgekehrt seien jetzt im [mm]\IR^{n}[/mm] ein Vektor v und ein
> Untervektorraum U gegeben, U [mm]\perp[/mm] der Orthogonalraum
> bezüglich des jabonischen Skalarprodukts (v1,.....,vm)
> eine Basis von U [mm]\perp[/mm] und A die Matrix mit den zeilen v1
> [mm]^{t},....vm^{t}.[/mm] Zeigen Sie: Mit b:=Av gilt dann:
>  v+ U = Lös(A,b)

Hallo,

was ist denn das "jabonische Skalarprodukt"?
Nachden ich das googelnderweise nicht finden kann,
auch die Idee, daß das "japanisch" in irgendeinem Dialekt heißt, verworfen habe,
komme ich zu dem Schluß: Du meinst "kanonisch".

>  Wir haben ja nun A als Einheitsmatrix bloß, dass die
> Zeilen umgedreht sind.

Wie kommst Du auf "Einheitsmatrix"?
Was meinst Du mit "umgedrehten Zeilen"?

Wir haben eine Basis [mm] B:=(v_1,...,v_m) [/mm] von [mm] U^{\perp}. [/mm]
Diese ist nicht zwingend eine Teilmenge der Standardbasis.

In den Zeilen von A sind die Transponierten der [mm] v_i. [/mm]
I.a. wird A nicht quadratisch sein, denn die [mm] v_i [/mm] entstammen dem [mm] \IR^n. [/mm]
[mm] U^{\perp}U^{\perp} [/mm]
Bist Du Dir sicher, daß Du wirklich

> v+ U = Lös(A,b)

zeigen sollst?
Ich glaube nämlich, daß das nicht gelingen wird...
Es sollte doch bestimmt [mm]v+ U^{\red{\perp}}[/mm] = Lös(A,b) heißen.


>  ich weiß nun aber irgendwie nicht was ich genau zeigen
> soll. BZw. wie ich zeigen soll, dass v+U = Lös(A,b) ist.

Du mußt vorrechnen,
1.
daß jedes Element x der Bauart x=v+u' mit [mm] u'\in U^{\perp} [/mm] eine Lösung von  Ax=Av  ist,
und
2.
daß man jedes Element x aus Lös(A,Av) als x=v+u' mit [mm] u'\in U^{\perp} [/mm] schreiben kann.


>  Soll ich mir einfach mal ein v, U und A basteln und gucken
> was da evtl passiert?

Das ist natürlich dann kein Beweis der zu zeigenden Aussage, für das Verständnis der zu bweisenden Aussage in meinen Augen aber eine goldrichtige  Idee.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de