www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Euler- DGL
Euler- DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler- DGL: Korrekturlesung
Status: (Frage) beantwortet Status 
Datum: 17:35 So 14.12.2008
Autor: Marcel08

Aufgabe
Betrachten Sie auf dem Intervall [mm] (0,\infty) [/mm] die folgende Euler- Differentialgleichung:

[mm] x^{2}y^{,,}-4xy^{,}+4y=x^{5}. [/mm]

(a) Bestimmen Sie die Lösungen der homogenen Gleichung in der Form [mm] y_{H}(x)=x^{\alpha}. [/mm]

(b) Begründen Sie, dass diese Lösungen linear unabhängig sind.

(c) Geben Sie alle Lösungen der homogenen Gleichung an und bestimmen Sie die allgemeine Lösung der Differentialgleichung mit der Variation der Konstanten.

Hallo lieber Matheraum,

bezüglich der gestellten Aufgabe würde ich mich über eine Korrekturlesung sehr freuen. Mein Lösungsversuch lautet:




(a)


1.) Substitution [mm] x=e^{t}, u(t)=y(e^{t}) [/mm] liefert:


[mm] u^{..}-u^{.}-4u^{.}+4u=u^{..}-5u^{.}+4u=0 [/mm]


Dies ist eine homogene lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten.



2.) Die charakteristische Gleichung lautet:


[mm] \lambda^{2}-5\lambda+4=0 [/mm]



und wir erhalten also


für [mm] \lambda_{1}=1 [/mm] und

für [mm] \lambda_{2}=4 [/mm]



Das Lösungsfundamentalsystem liefert also


[mm] u(t)=c_{1}e^{t}+c_{2}e^{4t}, [/mm] mit [mm] c_{1},c_{2}\in\IR [/mm] (*)




(b)


Wir bestimmen die Wronski- Determinante im Zuge einer Rücksubstitution des Lösungsfundamentalsystems


[mm] \vmat{ x & x^{4} \\ 1 & 4x^{3} }=3x^{4} [/mm]


[mm] \Rightarrow [/mm] In jedem Intervall gibt es eine Stelle [mm] x_{1} [/mm] mit [mm] W(x_{1})=3x_{1}^{4}\not=0, [/mm] also sind x und [mm] x^{4} [/mm] auf jedem Intervall I linear unabhängig.




(c)


1.) Rücksubstitution von (*) liefert:


[mm] y_{H}=c_{1}x+c_{2}x^{4}, [/mm] mit [mm] c_{1},c_{2}\in\IR [/mm]



Wir bilden die Inverse Wronski- Matrix, den Kehrwert der Wronski- Determinante und erhalten im Zuge der Berechnungen


für [mm] c_{1}^{,}=-\bruch{1}{3}x^{3} [/mm] und

für [mm] c_{2}^{,}=\bruch{1}{3} [/mm]



Integration liefert:


[mm] c_{1}(x)=-\bruch{1}{12}x^{4} [/mm] und

[mm] c_{2}(x)=\bruch{1}{3}x [/mm]



2.) Wir berechnen eine spezielle Lösung und können daher die Integrationskonstanten gleich 0 setzen. Es gilt


[mm] y_{S}=-\bruch{1}{12}x^{4}x+\bruch{1}{3}xx^{4} [/mm]



Wir erhalten also


[mm] y_{S}=\bruch{1}{4}x^{5} [/mm]



3.) Gemäß [mm] y=y_{H}+y_{S} [/mm] erhalten wir also


[mm] y(x)=x(c_{1}+c_{2}x^{3}+\bruch{1}{4}x^{4}) [/mm]




Ich bedanke mich recht herzlich. Gruß,





Marcel

        
Bezug
Euler- DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mo 15.12.2008
Autor: MathePower

Hallo Marcel08,



> Betrachten Sie auf dem Intervall [mm](0,\infty)[/mm] die folgende
> Euler- Differentialgleichung:
>  
> [mm]x^{2}y^{,,}-4xy^{,}+4y=x^{5}.[/mm]
>  
> (a) Bestimmen Sie die Lösungen der homogenen Gleichung in
> der Form [mm]y_{H}(x)=x^{\alpha}.[/mm]
>  
> (b) Begründen Sie, dass diese Lösungen linear unabhängig
> sind.
>  
> (c) Geben Sie alle Lösungen der homogenen Gleichung an und
> bestimmen Sie die allgemeine Lösung der
> Differentialgleichung mit der Variation der Konstanten.
>  Hallo lieber Matheraum,
>  
> bezüglich der gestellten Aufgabe würde ich mich über eine
> Korrekturlesung sehr freuen. Mein Lösungsversuch lautet:
>  
>
>
>
> (a)
>  
>
> 1.) Substitution [mm]x=e^{t}, u(t)=y(e^{t})[/mm] liefert:
>  
>
> [mm]u^{..}-u^{.}-4u^{.}+4u=u^{..}-5u^{.}+4u=0[/mm]
>  
>
> Dies ist eine homogene lineare Differentialgleichung 2.
> Ordnung mit konstanten Koeffizienten.
>  
>
>
> 2.) Die charakteristische Gleichung lautet:
>  
>
> [mm]\lambda^{2}-5\lambda+4=0[/mm]
>  
>
>
> und wir erhalten also
>  
>
> für [mm]\lambda_{1}=1[/mm] und
>  
> für [mm]\lambda_{2}=4[/mm]
>  
>
>
> Das Lösungsfundamentalsystem liefert also
>  
>
> [mm]u(t)=c_{1}e^{t}+c_{2}e^{4t},[/mm] mit [mm]c_{1},c_{2}\in\IR[/mm] (*)
>  
>
>
>
> (b)
>  
>
> Wir bestimmen die Wronski- Determinante im Zuge einer
> Rücksubstitution des Lösungsfundamentalsystems
>
>
> [mm]\vmat{ x & x^{4} \\ 1 & 4x^{3} }=3x^{4}[/mm]
>  
>
> [mm]\Rightarrow[/mm] In jedem Intervall gibt es eine Stelle [mm]x_{1}[/mm]
> mit [mm]W(x_{1})=3x_{1}^{4}\not=0,[/mm] also sind x und [mm]x^{4}[/mm] auf
> jedem Intervall I linear unabhängig.
>  
>
>
>
> (c)
>  
>
> 1.) Rücksubstitution von (*) liefert:
>  
>
> [mm]y_{H}=c_{1}x+c_{2}x^{4},[/mm] mit [mm]c_{1},c_{2}\in\IR[/mm]
>  
>
>
> Wir bilden die Inverse Wronski- Matrix, den Kehrwert der
> Wronski- Determinante und erhalten im Zuge der
> Berechnungen
>  
>
> für [mm]c_{1}^{,}=-\bruch{1}{3}x^{3}[/mm] und
>  
> für [mm]c_{2}^{,}=\bruch{1}{3}[/mm]
>  
>
>
> Integration liefert:
>  
>
> [mm]c_{1}(x)=-\bruch{1}{12}x^{4}[/mm] und
>  
> [mm]c_{2}(x)=\bruch{1}{3}x[/mm]
>  
>
>
> 2.) Wir berechnen eine spezielle Lösung und können daher
> die Integrationskonstanten gleich 0 setzen. Es gilt
>  
>
> [mm]y_{S}=-\bruch{1}{12}x^{4}x+\bruch{1}{3}xx^{4}[/mm]
>  
>
>
> Wir erhalten also
>  
>
> [mm]y_{S}=\bruch{1}{4}x^{5}[/mm]
>  
>
>
> 3.) Gemäß [mm]y=y_{H}+y_{S}[/mm] erhalten wir also
>  
>
> [mm]y(x)=x(c_{1}+c_{2}x^{3}+\bruch{1}{4}x^{4})[/mm]
>  
>


Stimmt alles. [ok]


>
>
> Ich bedanke mich recht herzlich. Gruß,
>  
>
>
>
>
> Marcel


Gruß
MathePower

Bezug
                
Bezug
Euler- DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 15.12.2008
Autor: Marcel08

Ich danke dir. Sehr freundlich.


Gruß, Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de