www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Euler und Fermat
Euler und Fermat < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler und Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Do 06.11.2008
Autor: Riley

Aufgabe
Die Eulersche phi-Funktion [mm] \phi: \mathbb{N}-\{1\} \rightarrow \mathbb{N } [/mm] ist definiert durch [mm] \phi(m) [/mm] = [mm] |(\mathbb{Z} [/mm] / m [mm] \mathbb{Z})^{\*}|. [/mm]
Zeigen Sie folgende Verallgemeinerung des kleinen Satzes von Fermat:
Seien m [mm] \in \mathbb{N} [/mm] und a [mm] \in \mathbb{Z} [/mm] mit ggT(a,m) =1. Dann ist
[mm] a^{\phi(m)} \equiv [/mm] 1 mod m.

Hallo,

wie kann man sich die Funktion [mm] \phi [/mm] vorstellen? Wird durch sie m auf die entsprechende Einheit in [mm] \mathbb{Z} [/mm] / m [mm] \mathbb{Z} [/mm] abgebildet?

Habt ihr einen Hinweis wie man diese Aufgabe lösen kann?
... das wäre wirklich super.

Viele Grüße,
Riley

        
Bezug
Euler und Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 06.11.2008
Autor: Fry

Hi,

also  [mm] \phi(m) [/mm] gibt die Anzahl der zu m teilerfremden Zahlen zwischen 1 und m an. Dies ist gleichbedeutend mit der Anzahl der Einheiten in [mm] \IZ/n\IZ=|(\IZ/n\IZ)^{\*}|. [/mm]
[mm] (\IZ/n\IZ)^{\*}= [/mm] Menge der Einheiten in [mm] \IZ/n\IZ. [/mm]

Man kann einfach beweisen: [mm] ggT(a,n)=1\gdw [/mm] a [mm] \in(\IZ/n\IZ)^{\*}, [/mm] also a Einheit in [mm] \IZ/n\IZ. [/mm]

Beweis:
[mm] ggT(a,n)=1\gdw1=ax+ny(x,y\in\IZ)\Rightarrow1=ax [/mm] in [mm] \IZ/n\IZ \gdw [/mm] a ist Einheit in [mm] \IZ/n\IZ [/mm]

Wenn du nun den Satz beweisen willst, solltest du den Satz von Lagrange und seine Folgerungen betrachten. Und zwar gilt:
Sei G Gruppe, [mm] a\in [/mm] G. Dann gilt  [mm] a^{|G|}=e [/mm]

Entsprechend [mm] a^{\phi(n)}=1 [/mm] in [mm] \IZ/n\IZ [/mm] ,wobei [mm] a\in(\IZ/n\IZ)^{\*} [/mm]
Jetzt eigentlich nur noch die Gleichung in eine Kongruenz umwandeln. Fertig !

Viele Grüße
Christian

Bezug
                
Bezug
Euler und Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 So 09.11.2008
Autor: Riley

Hi Christian,
ah das ist cool, vielen Dank für deine Erklärungen!
D.h. diese Gleichung

> Entsprechend [mm]a^{\phi(n)}=1[/mm] in [mm]\IZ/n\IZ[/mm] ,wobei
> [mm]a\in(\IZ/n\IZ)^{\*}[/mm]

ist schon gleichbedeutend mit [mm] a^{\phi(m)} \equiv [/mm] 1 mod n, denn das in Z durch m geteilt bleibt Rest 1 ?

Viele Grüße & besten Dank,
Riley



Bezug
                        
Bezug
Euler und Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 09.11.2008
Autor: Fry

Hi Riley,

ganz genau:

[mm] \overline{a} [/mm] = [mm] \overline{b} [/mm]  in [mm] \IZ/n\IZ [/mm]
[mm] a+n\IZ=b+n\IZ [/mm]
[mm] \gdw a\equiv [/mm] b mod n
[mm] \gdw [/mm] n | a-b

hab in meiner Erklärung bei Gleichungen in [mm] \IZ/n\IZ [/mm] die "Restklassenstriche" übrigens immer aus Faulheit weggelassen ; ).

Grüße
Christian



Bezug
                                
Bezug
Euler und Fermat: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 So 09.11.2008
Autor: Riley

Hallo Christian,
okay, alles klar. Vielen Dank nochmal!
Viele Grüße,
Riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de