www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Eulersche Beziehung
Eulersche Beziehung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Beziehung: homogene Funktion
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 08.04.2009
Autor: studi08

Aufgabe
Eine Funktion f: [mm] \IR^n \to \IR [/mm] heisst homogen vom Grad k,falls [mm] f(\lambda\cdot{}x)= \lambda^kf(x) [/mm] für alle [mm] \lambda>0 [/mm] und [mm] x\in\IR^n. [/mm] Zeige: ist f [mm] \in C^1 (\IR^n) [/mm] eine homogene Funktion vom Grad k,so gilt die Eulersche Beziehung
<gradf(x),x> = kf(x), [mm] x\in\IR^n [/mm]

Wir haben gerade erst mit der Differentialrechnung in [mm] \IR^n [/mm] angefangen. Ich bin aber noch nicht sehr sicher auf diesem Gebiet und wäre drum froh,wenn mir jemand ein paar Tipps gibt,wie ich diese Aufgabe angehen soll.Wir haben übrigens noch den Hinweis erhalten, dass wir für festes x [mm] \in \IR^n [/mm] die Ableitung von [mm] \lambda \mapsto f(\lambda*x) [/mm] an der Stelle [mm] \lambda [/mm] = 1 berechnen sollen.

Liebe Grüsse und Besten Dank

        
Bezug
Eulersche Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Mi 08.04.2009
Autor: MathePower

Hallo studi08,

> Eine Funktion f: [mm]\IR^n \to \IR[/mm] heisst homogen vom Grad
> k,falls [mm]f(\lambda\cdot{}x)= \lambda^kf(x)[/mm] für alle
> [mm]\lambda>0[/mm] und [mm]x\in\IR^n.[/mm] Zeige: ist f [mm]\in C^1 (\IR^n)[/mm] eine
> homogene Funktion vom Grad k,so gilt die Eulersche
> Beziehung
> <gradf(x),x> = kf(x), [mm]x\in\IR^n[/mm]
>  Wir haben gerade erst mit der Differentialrechnung in
> [mm]\IR^n[/mm] angefangen. Ich bin aber noch nicht sehr sicher auf
> diesem Gebiet und wäre drum froh,wenn mir jemand ein paar
> Tipps gibt,wie ich diese Aufgabe angehen soll.Wir haben
> übrigens noch den Hinweis erhalten, dass wir für festes x
> [mm]\in \IR^n[/mm] die Ableitung von [mm]\lambda \mapsto f(\lambda*x)[/mm] an
> der Stelle [mm]\lambda[/mm] = 1 berechnen sollen.


Wende links die Kettenregel und rechts die Potenzregel an.


>  
> Liebe Grüsse und Besten Dank


Gruß
MathePower

Bezug
                
Bezug
Eulersche Beziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Mi 08.04.2009
Autor: studi08

Vielen Dank für deinen Tipp, Mathe-Power.Wie die rechte Seite mit der Potenzenregel berechnen soll seh ich schon aber ich versteh noch nicht,wie ich die Kettenregeln auf <gradf(x),x> anwenden kann. Kann mir da jemand weiter helfen?

Bezug
                        
Bezug
Eulersche Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mi 08.04.2009
Autor: MathePower

Hallo studi08,


> Vielen Dank für deinen Tipp, Mathe-Power.Wie die rechte
> Seite mit der Potenzenregel berechnen soll seh ich schon
> aber ich versteh noch nicht,wie ich die Kettenregeln auf
> <gradf(x),x> anwenden kann. Kann mir da jemand weiter
> helfen?


Die Kettenregel ist auf [mm]f\left(\lambda*x\right)[/mm] anzuwenden.


Gruß
MathePower

Bezug
                                
Bezug
Eulersche Beziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 08.04.2009
Autor: studi08

Ich weiss ja,dass $ [mm] f\left(\lambda\cdot{}x\right) [/mm] $ = [mm] \lambda^k*f(x) [/mm] ist. Ich seh aber noch immer nicht ganz genau wie ich jetzt die Kettenregel anwenden soll.
Gibt es jetzt in diesem Fall [mm] \lambda^{k-1}*f(x)*f'(x) [/mm] oder wie sieht das aus?

Bezug
                                        
Bezug
Eulersche Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mi 08.04.2009
Autor: MathePower

Hallo studi08,



> Ich weiss ja,dass [mm]f\left(\lambda\cdot{}x\right)[/mm] =
> [mm]\lambda^k*f(x)[/mm] ist. Ich seh aber noch immer nicht ganz
> genau wie ich jetzt die Kettenregel anwenden soll.
>  Gibt es jetzt in diesem Fall [mm]\lambda^{k-1}*f(x)*f'(x)[/mm] oder
> wie sieht das aus?


Wir haben

[mm]f\left(\lambda x\right)=\lambda^{k}*f\left(x\right)[/mm]

Beide Seiten nach [mm]\lambda[/mm] abgeleitet:

[mm]\bruch{d}{d\lambda} \left( \ f\left(\lambda x\right) \ \right)=\bruch{d}{d\lambda} \left( \ \lambda^{k}*f\left(x\right) \ \right)[/mm]

[mm]\gdw \bruch{d}{d\lambda} \left( \ f\left(\lambda x\right) \ \right)=k* \lambda^{k-1}*f\left(x\right)[/mm]

Und auf der linken Seite wendest Du jetzt die Kettenregel an.

Gruß
MathePower

Bezug
                                                
Bezug
Eulersche Beziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Mi 08.04.2009
Autor: studi08

Ganz herzlichen Dank für deine Ausführungen!Ich versteh aber noch immer nicht ganz genau,wie ich die Kettenregel nun auf das  [mm] \bruch{d}{d\lambda} \left( \ f\left(\lambda x\right) \ \right) [/mm] anwenden kann.Die Kettenregel lautet ja D(g [mm] \circ [/mm] f)(x)=Dg(f(x))D(f(x)). In unserem Fall haben wir ja nur eine Funktion,nämlich eben die Ableitung nach [mm] d\lambda [/mm] von der Funktion [mm] \left( \ f\left(\lambda x\right) \ \right). [/mm] Wie geht also dieser Schritt konkret?
Sorry,sind für dich sicher triviale Fragen,aber ich hab momentan einfach noch nicht den Durchblick.

Bezug
                                                        
Bezug
Eulersche Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mi 08.04.2009
Autor: MathePower

Hallo studi08,

> Ganz herzlichen Dank für deine Ausführungen!Ich versteh
> aber noch immer nicht ganz genau,wie ich die Kettenregel
> nun auf das  [mm]\bruch{d}{d\lambda} \left( \ f\left(\lambda x\right) \ \right)[/mm]
> anwenden kann.Die Kettenregel lautet ja D(g [mm]\circ[/mm]
> f)(x)=Dg(f(x))D(f(x)). In unserem Fall haben wir ja nur
> eine Funktion,nämlich eben die Ableitung nach [mm]d\lambda[/mm] von
> der Funktion [mm]\left( \ f\left(\lambda x\right) \ \right).[/mm]
> Wie geht also dieser Schritt konkret?


Definiere [mm]u\left(\lambda\right)=\lambda*x[/mm]

Dann ist

[mm]\bruch{d}{d\lambda} \left( \ f\left(\lambda x\right) \ \right) = \bruch{d}{d\lambda} \left( \ f\left( \ u \left(\lambda\right) \ \right) \ \right)=\bruch{df}{du} \bruch{du}{d\lambda}[/mm]


>  Sorry,sind für dich sicher triviale Fragen,aber ich hab
> momentan einfach noch nicht den Durchblick.


Gruß
MathePower

Bezug
                                                        
Bezug
Eulersche Beziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Mi 08.04.2009
Autor: Marcel

Hallo studi,

> Ganz herzlichen Dank für deine Ausführungen!Ich versteh
> aber noch immer nicht ganz genau,wie ich die Kettenregel
> nun auf das  [mm]\bruch{d}{d\lambda} \left( \ f\left(\lambda x\right) \ \right)[/mm]
> anwenden kann.Die Kettenregel lautet ja D(g [mm]\circ[/mm]
> f)(x)=Dg(f(x))D(f(x)). In unserem Fall haben wir ja nur
> eine Funktion,nämlich eben die Ableitung nach [mm]d\lambda[/mm] von
> der Funktion [mm]\left( \ f\left(\lambda x\right) \ \right).[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Mathepower hat Dir ja schon eine vernünftige Antwort geschrieben, aber zur Demonstration:
Setze $g(\lambda)=\lambda*x=\vektor{\lambda x_1\\\lambda x_2\\.\\.\\.\\\lambda x_n}$. Dann ist $f(\lambda*x)=(f \circ g)(\lambda)\,.$

Somit erkennst Du
$$(\star)\;\;\;Df(\blue{x})=\Big(\frac{\partial f(\blue{x})}{\partial x_1},\,\frac{\partial f(\blue{x})}{\partial x_2},\,...,\,\frac{\partial f(\blue{x})}{\partial x_n}\Big)=\text{grad}^T f(\blue{x})\,$$
und
$$\frac{d}{d \lambda}g(\lambda*x)=x\,.$$

(Hierbei ist $\text{grad}$ als Spaltenvektor und $\text{grad}^T$ als zugehöriger transponierter Vektor folglich als Zeilenvektor aufzufassen.)

Was ist folglich
$$Df(\green{g(x)})\;\left.\frac{dg(x)}{d\lambda}\right|_{\lambda=1}\;\;\text{?}$$

(P.S.: Um $Df(g(x))$ anzugeben, hast Du einfach nur in $(\star)$ jedes $\blue{x}$ durch $\green{g(x)}$ zu ersetzen. Beachte dabei, dass $\left.g(x)\right|_{\lambda=1}=x$ ist.)

Beachte dabei, dass nach der Kettenregel
$$\frac{d}{d\lambda} (f \circ g)(\lambda)=Df(g(\lambda))\;\frac{dg(\lambda)}{d\lambda}$$
gilt.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de