www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Eulersche Funktion mit ggT = 2
Eulersche Funktion mit ggT = 2 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Funktion mit ggT = 2: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:12 Sa 07.11.2020
Autor: sancho1980

Aufgabe
Seien m, n [mm] \in \IN, [/mm] und sei ggT(m, n) = 2. Beweisen Sie, dass [mm] \phi(mn) [/mm] = 2 [mm] \phi(m) \phi(n). [/mm]

Hallo,
grübel leider schon wieder mehrere Stunden hierüber.

Verfolge bisher 2 Ansätze:

1) Aus ggT(m, n) = 2 folgt einerseits, dass sowohl die Primfaktorzerlegung von m als auch die von n eine Zweierpotenz [mm] \ge [/mm] 1 enthält, wobei entweder die von m oder die von n genau 1 ist. Sei die Zerlegung von n diejenige, die genau [mm] 2^1 [/mm] enthält. Dann gilt [mm] \phi(\frac{mn}{2}) [/mm] = [mm] \phi(m) \phi(\frac{n}{2}). [/mm] Hier komme ich nicht weiter, weil ich zu keiner allgemeinen Aussage zum Verhältnis [mm] \frac{\phi(\frac{n}{2})}{\phi(n)} [/mm] bzw. [mm] \frac{\phi(\frac{mn}{2})}{\phi(mn)} [/mm] gelange ...

2) Andererseits habe ich einen Beweis für die Multiplikativität [mm] \phi(mn) [/mm] = [mm] \phi(m) \phi(n) [/mm] für ggT(m, n) = 1. Hier werden im Grunde drei Mengen [mm] U_{m}, U_{n} [/mm] und [mm] U_{mn} [/mm] mit [mm] U_{x} [/mm] = [mm] \{ a \in \IZ_{x} \vert ggT(a, x) = 1 \} [/mm] verwendet und dann zwei Funktionen [mm] U_{mn} \to U_m \times U_n [/mm] und [mm] U_m \times U_n \to U_{mn} [/mm] definiert und gezeigt, dass beide surjektiv sind, wobei verrwendet wird, dass es mit dem chinesischen Restsatz ein eindeutig bestimmtes [mm] x_0 \in \IZ_{mn} [/mm] so gibt, dass [mm] x_0 [/mm] mod m = a [mm] \in \IZ_{m} [/mm] und [mm] x_0 [/mm] mod n = b [mm] \in \IZ_{n}. [/mm] Auch hier stocke ich leider und würde mich über einen Tipp freuen...

Gruß und Danke,

Martin

        
Bezug
Eulersche Funktion mit ggT = 2: Antwort
Status: (Antwort) fertig Status 
Datum: 06:33 So 08.11.2020
Autor: statler

Guten Morgen!

> Seien m, n [mm]\in \IN,[/mm] und sei ggT(m, n) = 2. Beweisen Sie,
> dass [mm]\phi(mn)[/mm] = 2 [mm]\phi(m) \phi(n).[/mm]
>  Hallo,
>  grübel leider schon wieder mehrere Stunden hierüber.
>  
> Verfolge bisher 2 Ansätze:
>  
> 1) Aus ggT(m, n) = 2 folgt einerseits, dass sowohl die
> Primfaktorzerlegung von m als auch die von n eine
> Zweierpotenz [mm]\ge[/mm] 1 enthält, wobei entweder die von m oder
> die von n genau 1 ist. Sei die Zerlegung von n diejenige,
> die genau [mm]2^1[/mm] enthält. Dann gilt [mm]\phi(\frac{mn}{2})[/mm] =
> [mm]\phi(m) \phi(\frac{n}{2}).[/mm] Hier komme ich nicht weiter,

>
Unter diesen Voraussetzungen ist [mm] $\varphi(\frac{n}{2}) [/mm] = [mm] \varphi(n)$. [/mm] Am einfachsten ist es wohl, du schreibst dir die Primfaktorzerlegungen von m und n hin und benutzt dann die Produktdarstellung von [mm] $\varphi$: [/mm]
$m = [mm] 2^{e_0}\cdot p_1^{e_1} \cdots p_r^{e_r}$ [/mm] und $n = [mm] 2^{1}\cdot q_1^{f_1} \cdots q_s^{f_s}$ [/mm]

Jetzt ist [mm] $\varphi(m) [/mm] = [mm] 2^{e_0 - 1}\cdot p_1^{e_1}(1-\frac{1}{p_1}) \cdots p_r^{e_r}(1-\frac{1}{p_r})$ [/mm] und [mm] $\varphi(n) [/mm] = [mm] 2^{0}\cdot q_1^{f_1}(1-\frac{1}{q_1}) \cdots q_s^{f_s}(1-\frac{1}{q_s})$ [/mm]

Was ist jetzt [mm] \varphi(mn)? \rightarrow [/mm] Das ist deine Aufgabe :)
So weit so gut und schönen Sonntag
Dieter



Bezug
                
Bezug
Eulersche Funktion mit ggT = 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:10 So 08.11.2020
Autor: sancho1980

Super danke. Dabei fällt mir auf: Auf diese Weise hätte man [mm] \phi(mn) [/mm] = [mm] \phi(m) \phi(n) [/mm] im Fall dass ggT(m, n) = 1 auch viel einfacher zeigen können als über diese Mengen [mm] U_m, U_n [/mm] und [mm] U_{mn} [/mm] ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de