www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Eulersche Phi-Funktion Beweis
Eulersche Phi-Funktion Beweis < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Phi-Funktion Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:38 So 05.12.2010
Autor: qsxqsx

Hallo,

Die Eulersche Phi Funktion zu n gibt die Anzahl Zahlen an, welche keinen gemeinsamen Teiler ausser die 1 mit n haben.
Bsp: Falls n eine Primzahl ist, so ist [mm] \phi(n) [/mm] = n-1  

Für eine Zahl n = [mm] p_{1}^{k_{1}}*...*p_{m}^{k_{m}} [/mm] , wobei [mm] p_{i} [/mm] jeweils verschiedene Primzahlen sind, steht dass gilt

[mm] \phi(n) [/mm] = [mm] \produkt_{i=1}^{m}(p_{i} [/mm] - [mm] 1)*p_{i}^{k_{i} - 1} [/mm]

Ich will was einfacheres Zeigen, nämlich den Fall, wo alle Potenzen [mm] k_{i} [/mm] = 1 sind, woraus folgt
[mm] \phi(n) [/mm] = [mm] \produkt_{i=1}^{m}(p_{i} [/mm] - 1),
,mit n = [mm] p_{1}*p_{2}*...*p_{m} [/mm]

Mein Versuch dies zu zeigen:

[mm] \produkt_{i=1}^{m}(p_{i} [/mm] - 1) = n - "Alle Möglichkeiten mit den m Primzahlen Zahlen zu bilden"
= [mm] p_{1}*p_{2}*...*p_{m} [/mm] - [mm] \summe_{a=1}^{m} \vektor{m \\ a} [/mm]
= [mm] p_{1}*p_{2}*...*p_{m} [/mm] - [mm] (2^{m} [/mm] - 1)

Das Problem ist, dass das nicht stimmt. Sieht jemand meinen Denkfehler? Bräuchte nur einen Tipp.
Danke sehr!

Hier auf Wiki steht eigentlich schon der Beweis für sogar verschiedene Potenzen k von [mm] p_{i}. [/mm] Also n = [mm] p_{1}^{k_{1}}*...*p_{m}^{k_{m}} [/mm] Trotzdem möchte ich gerne sehen, dass es auch auf meine Art geht. []Eulersche Phi Funktion


Gruss


        
Bezug
Eulersche Phi-Funktion Beweis: Fehler in meiner Überlegung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 So 05.12.2010
Autor: qsxqsx

Sry, ich habe gerade selber erst jetzt einen Fehler in meinem Prinzip erkannt. Wenn ich es doch nicht schaffe melde ich mich.

Gruss

Bezug
        
Bezug
Eulersche Phi-Funktion Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 So 12.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de