www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Eulerscher Mulitplikator
Eulerscher Mulitplikator < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulerscher Mulitplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 So 18.05.2008
Autor: Riley

Aufgabe
Eine nirgends verschwindende stetige Funktion [mm] \mu: [/mm] M [mm] \rightarrow [/mm] R heißt ein eulerscher Multiplikator oder integrierender Fakor zur Differentialform [mm] \omega, [/mm] wenn es eine stetig diffbare Funktion f: M [mm] \rightarrow [/mm] R mit df = [mm] \mu \omega [/mm] gibt.
(i) Wie drücken sich die Lösungen von [mm] \omega [/mm] = 0 durch f aus?
(ii) Welche partiellen Differentialgleichungen hat man zu lösen, um einen Eulerschen Multiplikator in eienr geeigneten Umgebung eines Punktes in M zu bekommen?
(iii) Suche einen Eulerschen Multiplikator zu [mm] \omega [/mm] = [mm] exp(x-y^2) [/mm] dx - 2y dy und löse [mm] \omega [/mm] = 0.

Hallo,
ich versteh es noch nicht ganz, was es mit diesen Eulerschen Multiplikatoren so auf sich hat. Ich hab im Heuser folgendes nachgelesen: Es geht wohl darum eine DGL p(x,y) + q(x,y) y' = 0 durch Multiplikation mit einer stetigen und nirgendsverschwindenden Funktion [mm] \mu(x,y) [/mm] sie zu einer exakten Gleichung [mm] \mu(x,y) [/mm] p(x,y) + [mm] \mu(x,y) [/mm] q(x,y) y' = 0 zu machen. [mm] \mu [/mm] ist dann eben dieser Eulerscher Multiplikatpor, der der Bedingung:

[mm] \frac{\partial}{\partial y}( \mu [/mm] p) = [mm] \frac{\partial}{\partial x} (\mu [/mm] q) (*)genügen muss.
Anscheinend braucht man nicht alle Lösungen dieser Gleichung, sondern nur eine davon.

Also ich weiß nicht, die Gleichung (*) ist doch dann eigentlich die partielle DGL die man lösen muss, also Antwort auf (ii) ?

Zu (i):
Kann man [mm] \omega [/mm] schreiben als [mm] \omega [/mm] = p(x,y) dx + q(x,y) dy ?
Hm, man hat df = [mm] \mu \omega, [/mm] wie kann man die Lösungen von [mm] \omega [/mm] 0 durch f ausdrücken? Das versteh ich noch nicht ... Könnt iht mir bitte einen Tip geben?? *please*

Viele Grüße,
Riley

        
Bezug
Eulerscher Mulitplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 02:58 Mo 19.05.2008
Autor: MatthiasKr

Hallo Riley!
> Eine nirgends verschwindende stetige Funktion [mm]\mu:[/mm] M
> [mm]\rightarrow[/mm] R heißt ein eulerscher Multiplikator oder
> integrierender Fakor zur Differentialform [mm]\omega,[/mm] wenn es
> eine stetig diffbare Funktion f: M [mm]\rightarrow[/mm] R mit df =
> [mm]\mu \omega[/mm] gibt.
> (i) Wie drücken sich die Lösungen von [mm]\omega[/mm] = 0 durch f
> aus?
>  (ii) Welche partiellen Differentialgleichungen hat man zu
> lösen, um einen Eulerschen Multiplikator in eienr
> geeigneten Umgebung eines Punktes in M zu bekommen?
>  (iii) Suche einen Eulerschen Multiplikator zu [mm]\omega[/mm] =
> [mm]exp(x-y^2)[/mm] dx - 2y dy und löse [mm]\omega[/mm] = 0.
>  Hallo,
>  ich versteh es noch nicht ganz, was es mit diesen
> Eulerschen Multiplikatoren so auf sich hat. Ich hab im
> Heuser folgendes nachgelesen: Es geht wohl darum eine DGL
> p(x,y) + q(x,y) y' = 0 durch Multiplikation mit einer
> stetigen und nirgendsverschwindenden Funktion [mm]\mu(x,y)[/mm] sie
> zu einer exakten Gleichung [mm]\mu(x,y)[/mm] p(x,y) + [mm]\mu(x,y)[/mm]
> q(x,y) y' = 0 zu machen. [mm]\mu[/mm] ist dann eben dieser
> Eulerscher Multiplikatpor, der der Bedingung:
>  
> [mm]\frac{\partial}{\partial y}( \mu[/mm] p) =
> [mm]\frac{\partial}{\partial x} (\mu[/mm] q) (*)genügen muss.
>  Anscheinend braucht man nicht alle Lösungen dieser
> Gleichung, sondern nur eine davon.
>  
> Also ich weiß nicht, die Gleichung (*) ist doch dann
> eigentlich die partielle DGL die man lösen muss, also
> Antwort auf (ii) ?

im prinzip ja, allerdings brauchst du dich nicht auf die dimension 2 zu beschraenken. allgemein sollte die PDE einfach so lauten:

[mm] $d(\mu \omega)=0$, [/mm]

was ja die notwendige bedingung (geschlossenheit) fuer exaktheit ist. wenn du [mm] \omega [/mm] jetzt bezueglich einer basis (den [mm] dx_i [/mm] ) darstellst, erhaelst du eine PDE.


>  
> Zu (i):
>  Kann man [mm]\omega[/mm] schreiben als [mm]\omega[/mm] = p(x,y) dx + q(x,y)
> dy ?
>  Hm, man hat df = [mm]\mu \omega,[/mm] wie kann man die Lösungen von
> [mm]\omega[/mm] 0 durch f ausdrücken? Das versteh ich noch nicht ...
> Könnt iht mir bitte einen Tip geben?? *please*

diese aufgabe finde ich auch unklar formuliert. Sollt ihr evtl. einfach die loesungen f der gleichung $df=0$ angeben? das ist nicht so schwer...

gruss
matthias

Bezug
                
Bezug
Eulerscher Mulitplikator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Fr 23.05.2008
Autor: Riley

Hi Matthias,
danke für deine Antwort und die Hinweise. Die Aufgabe ist wirklich etwas merkwürdig, aber [mm] \omega [/mm] = 0 und [mm] \mu \omega [/mm] = 0 müssten ja die gleiche Lösungsmenge haben. Dann ist es klar.

Viele Grüße,
Riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de