www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Eulersches Theorem
Eulersches Theorem < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersches Theorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Di 16.03.2010
Autor: toteitote

Aufgabe
See whether the function [mm] f(x,y)=\bruch{xy}{x^{2}+y^{2}} [/mm] is homogenous, and check Euler's Theorem if it is.

Hallo, ich habe herausgefunden, dass die Funktion homogen ist mit Grad 0. Im zweiten Schritt soll ich das Ergebnis mit dem Eulerschen Theorem bestätigen. Ich kenne die Formel: [mm] f(x,y)=x*f_{1}'(x,y)+y*f_{2}'(x,y), [/mm] aber damit komme ich nicht auf das Ergebnis. Kann mir jemand von mir weiterhelfen? Ich möchte wissen, wie ich das berechnen muss und was ich in diesem Fall mit dem Eulerschen Theorem mache. MfG Tiemo Gregor

        
Bezug
Eulersches Theorem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 16.03.2010
Autor: Gonozal_IX

Huhu,

schau mal []hier
Du musst halt verifizieren, ob die Gleichung stimmt.

MFG,
Gono.

Bezug
                
Bezug
Eulersches Theorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Di 16.03.2010
Autor: toteitote

Hallo, Gono, das ist zwar nett gemeint, aber mich verwirrt Wikipedia nur mit den ganzen komischen Zeichen in den Gleichungen. Unser Wirtschaftsmathebuch ist einfacher geschrieben, aber ich verstehe das Konzept dahinter nicht.

Wenn ich in meine Formel einsetze bekomme ich [mm] x(\bruch{y-x^{2}y}{x^{2}+y^{2}})+x(\bruch{x-xy^{2}}{x^{2}+y^{2}})=k(\bruch{xy}{x^{2}+y^{2}}) [/mm]

nach dem auflösen bekomme ich k=-4xy, womit ich aber nicht viel anfangen kann, da ich ja verifizieren soll, dass k=0 ist.

Ich hoffe, mir kann jemand ganz speziell bei der Aufgabe helfen. Was ich dem Wikipediaartikel entnehmen konnte ist, dass der Eulersche Satz im Endeffekt eine andere Schreibweise von [mm] f(tx,ty)=t^{k}(f(x,y)) [/mm] ist. Und ich bin mir nichtmal sicher, ob ich da richtig liege. :)

Gruss, Tiemo Gregor

Bezug
                        
Bezug
Eulersches Theorem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 16.03.2010
Autor: leduart

Hallo
Deine Ableitungen sind falsch, wenn du richtig ableitest kommt 0 raus.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de