www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Eulerverfahren
Eulerverfahren < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulerverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Mo 16.11.2009
Autor: kushkush

Aufgabe
Gegeben ist die Differentialgleichung [mm] $y'=\frac{y^{2}}{x^{2}}$. [/mm]

Lösen Sie die Differentialgleichung numerisch mit dem Eulerverfahren. Berechnen sie [mm] y(x_{e}) [/mm] unter Anfangsbedingung $y(1)=-1)$. Wählen Sie die Schrittweite h=0.1 .
Vergleichen Sie [mm] $y(x_{e})$ [/mm] mit dem exakten Wert.

Guten Abend,

um numerisch zu integrieren benötige ich ja x, y(x), y'(x) und [mm] y'(x)\cdot [/mm] h.

gegeben sind anfangs $x =1$ und anfangs $y(x) = -1$ ... dann wäre erstes $y'(x) = 1$ und erstes $y'(x) [mm] \cdot [/mm] h = 0.1$; zweites $y=0.9$ zweites [mm] $y'(x)=\frac{.9^{2}}{.2^{2}}$ [/mm] und so weiter... also im dritten schritt wäre $x=0.3$ und so weiter...

stimmt meine Vorgehensweise??

exakter Wert:

[mm] $\integral{\frac{1}{y}dy}=\integral{\frac{1}{x}dx}$ [/mm]  

ergibt als allgemeine Lösung: [mm] $y=x+\frac{1}{C}$ [/mm]

stimmt diese allgemeine Lösung?


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Eulerverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 16.11.2009
Autor: MathePower

Hallo kushkush,


> Gegeben ist die Differentialgleichung
> [mm]y'=\frac{y^{2}}{x^{2}}[/mm].
>  
> Lösen Sie die Differentialgleichung numerisch mit dem
> Eulerverfahren. Berechnen sie [mm]y(x_{e})[/mm] unter
> Anfangsbedingung [mm]y(1)=-1)[/mm]. Wählen Sie die Schrittweite
> h=0.1 .
>  Vergleichen Sie [mm]y(x_{e})[/mm] mit dem exakten Wert.
>  Guten Abend,
>  
> um numerisch zu integrieren benötige ich ja x, y(x), y'(x)
> und [mm]y'(x)\cdot[/mm] h.
>
> gegeben sind anfangs [mm]x =1[/mm] und anfangs [mm]y(x) = -1[/mm] ... dann


[mm]x_{0}=1, \ y_{0}=-1[/mm]


> wäre erstes [mm]y'(x) = 1[/mm] und erstes [mm]y'(x) \cdot h = 0.1[/mm];


Danach ist [mm]y_{1}=-0.9[/mm] und [mm]x_{1}=1+0.1=1.1[/mm]


> zweites [mm]y=0.9[/mm] zweites [mm]y'(x)=\frac{.9^{2}}{.2^{2}}[/mm] und so


Das stimmt nicht.

[mm]y' = \left(\bruch{-0.9}{1.1}\right)^{2}[/mm]


> weiter... also im dritten schritt wäre [mm]x=0.3[/mm] und so
> weiter...
>  
> stimmt meine Vorgehensweise??


Du bekommst das Eulerverfahren, wenn Du y' durch den Differenzenquotienten ersetzt:

[mm]y'\left(x_{n}\right) \approx \bruch{y_{n+1}-y_{n}}{h}=\left(\bruch{y_{n}}{x_{n}}\right)^{2}[/mm]


>  
> exakter Wert:
>
> [mm]\integral{\frac{1}{y}dy}=\integral{\frac{1}{x}dx}[/mm]  
>
> ergibt als allgemeine Lösung: [mm]y=x+\frac{1}{C}[/mm]
>
> stimmt diese allgemeine Lösung?
>


Diese allgemeine Lösung stimmt leider nicht.


>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.


Gruss
MathePower

Bezug
                
Bezug
Eulerverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 16.11.2009
Autor: kushkush

Hi Mathepower,



ich habe jetzt 10 Schritte gemacht und komme auf ein y(x) von -0.627, ist das richtig? und in wie fern kann ich damit die Differentialgleichung "auflösen"?



danke

Bezug
                        
Bezug
Eulerverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mo 16.11.2009
Autor: leduart

Hallo
was dein [mm] x_e [/mm] ist steht nicht in der Aufgabe. du sollst ja y an der Stelle ausrechnen. nach 10 Schritten solltest x=2 sein.
Dann sollst du x=2 in die bis dahin korrigierte exakte Lösung einsetzen und vergleichen.
Deine 10 Schritte nachzurechnen ist nicht unsere aufgabe. rechne die ersten 3 vor, dann kontrollieren wir, ob du es richtig machst.
Gruss leduart

Bezug
        
Bezug
Eulerverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mo 16.11.2009
Autor: leduart

Hallo
Da du deine 3 Schritte nicht vorrechnest kann ichs nicht genau sehen. y(0.1) ist nicht 0.9 und dann weiss ich ja bei einer Zahl nicht, ob das ein Schreibfehler ist.
2. Deine exakte Lösung ist falsch. wo sind die Quadrate geblieben? und wenns wieder nur ein Schreibfehler ist, bist du mit c falsch umgegangen.
Gruss leduart

Bezug
                
Bezug
Eulerverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Mo 16.11.2009
Autor: kushkush

Hi

$x=1$ $y=-1$ $y'=1$ [mm] $y'\cdot [/mm] h= 0.1$
$x=1.1$ $y=-0.9$ $y'=0.6694$ [mm] $y'\cdot [/mm] h= 0.06694$
$x=1.2$ $y=-0.833$ $y'=0.482$ $y' [mm] \cdot [/mm] h= 0.0482$
$x=1.3$ $y=-0.7848$ $y'=0.36445$ $y' [mm] \cdot [/mm] h= 0.03644$


bei der analytischen Lösung erhält man ja auf beiden Seiten zuerst [mm] $\integral{ \frac{1}{y^2}dy}$ [/mm] (bzw. mit x und dx)

das integriert gibt doch [mm] $-\frac{1}{y}=-\frac{1}{x}+C$ [/mm]  ?




Bezug
                        
Bezug
Eulerverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mo 16.11.2009
Autor: MathePower

Hallo kushkush,

> Hi
>  
> [mm]x=1[/mm] [mm]y=-1[/mm] [mm]y'=1[/mm] [mm]y'\cdot h= 0.1[/mm]
>  [mm]x=1.1[/mm] [mm]y=-0.9[/mm] [mm]y'=0.6694[/mm]
> [mm]y'\cdot h= 0.06694[/mm]
>  [mm]x=1.2[/mm] [mm]y=-0.833[/mm] [mm]y'=0.482[/mm] [mm]y' \cdot h= 0.0482[/mm]
>  
> [mm]x=1.3[/mm] [mm]y=-0.7848[/mm] [mm]y'=0.36445[/mm] [mm]y' \cdot h= 0.03644[/mm]
>  


Ok, das ist richtig.


>
> bei der analytischen Lösung erhält man ja auf beiden
> Seiten zuerst [mm]\integral{ \frac{1}{y^2}dy}[/mm] (bzw. mit x und
> dx)
>
> das integriert gibt doch [mm]-\frac{1}{y}=-\frac{1}{x}+C[/mm]  ?
>


Ja.


Gruss
MathePower

  

Bezug
                                
Bezug
Eulerverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 16.11.2009
Autor: kushkush

$ [mm] -\frac{1}{y}=-\frac{1}{x}+C [/mm] $

[mm] $\frac{1}{y}=\frac{1}{x}-C [/mm] $

$ y=x - [mm] \frac{1}{C}$ [/mm]

?

und wie kann ich die Zahl beim Eulerverfahren weiterverwenden?


Danke

Bezug
                                        
Bezug
Eulerverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 16.11.2009
Autor: MathePower

Hallo kushkush,

> [mm]-\frac{1}{y}=-\frac{1}{x}+C[/mm]
>
> [mm]\frac{1}{y}=\frac{1}{x}-C[/mm]
>  
> [mm]y=x - \frac{1}{C}[/mm]


Das muß hier so lauten:

[mm]y=\bruch{1}{\bruch{1}{x}-C}[/mm]


>  
> ?
>
> und wie kann ich die Zahl beim Eulerverfahren
> weiterverwenden?
>


Welche Zahl?


>
> Danke


Gruss
MathePower

Bezug
                                                
Bezug
Eulerverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 16.11.2009
Autor: kushkush

Ich dachte man könne aus der Zahl die man erhält die Funktion bestimmen, dabei ist das ganze ja nur eine Näherung an die analytisch berechnete Zahl und nicht eine "angenäherte" Funktion selber...


und dann wäre die allgemeine Lösung ja

[mm] $y=\frac{x}{1-C}$ [/mm]  


dankeschön!

Bezug
                                                        
Bezug
Eulerverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mo 16.11.2009
Autor: MathePower

Hallo kushkush,

> Ich dachte man könne aus der Zahl die man erhält die
> Funktion bestimmen, dabei ist das ganze ja nur eine
> Näherung an die analytisch berechnete Zahl und nicht eine
> "angenäherte" Funktion selber...
>  


Eben.


>
> und dann wäre die allgemeine Lösung ja
>
> [mm]y=\frac{x}{1-C}[/mm]  
>


Nicht ganz:

[mm]y=\frac{x}{1-C\red{x}}[/mm]  


>
> dankeschön!  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de