www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Existenz des Integrals
Existenz des Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Sa 10.04.2010
Autor: MontBlanc

Aufgabe
Entscheiden Sie begründet, ob das folgende Integral existiert (Versuchen Sie NICHT es zu bestimmen):

[mm] \integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx} [/mm]

Hallo,

solche Aufgaben fallen mir generell immer sehr schwer, weil ich nicht weiß, wann eine Singularität integrierbar ist und wann nicht.

Hier sind die kritischen Stellen, wenn der Nenner null wird, also x=0 und [mm] x=\pi [/mm] sowie [mm] x\to\infty. [/mm]
Ich habe jetzt das Problem, dass ich gar nicht weiß, wie ich da ansetze, wenn ich nun bsp. die Stelle [mm] x=\pi [/mm] betrachten will.
Natürlich gibt es kein Patentrezept, aber man kann ja nicht so vollkommen planlos da ran gehen wie ich.

Lg

        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 10.04.2010
Autor: rainerS

Hallo!

> Entscheiden Sie begründet, ob das folgende Integral
> existiert (Versuchen Sie NICHT es zu bestimmen):
>  
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> Hallo,
>  
> solche Aufgaben fallen mir generell immer sehr schwer, weil
> ich nicht weiß, wann eine Singularität integrierbar ist
> und wann nicht.
>  
> Hier sind die kritischen Stellen, wenn der Nenner null
> wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  Ich habe jetzt das Problem, dass ich gar nicht weiß, wie
> ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> betrachten will.

Schau dir doch erst einmal das Verhalten des Integranden an den kritischen Stellen an, also z.B.

[mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].

Wenn dieser Limes endlich ist, kann an diesem kritischen Punkt gar nichts passieren. (Warum?)

Tipp: der Faktor [mm] $\bruch{x+1}{x^{3/2}}$ [/mm] ist sowieso endlich, also geht es nur um den Limes

[mm] \limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].

Viele Grüße
   Rainer

Bezug
                
Bezug
Existenz des Integrals: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:28 Sa 10.04.2010
Autor: abakus


> Hallo!
>  
> > Entscheiden Sie begründet, ob das folgende Integral
> > existiert (Versuchen Sie NICHT es zu bestimmen):
>  >  
> >
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> >  

> > Hallo,
>  >  
> > solche Aufgaben fallen mir generell immer sehr schwer, weil
> > ich nicht weiß, wann eine Singularität integrierbar ist
> > und wann nicht.
>  >  
> > Hier sind die kritischen Stellen, wenn der Nenner null
> > wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  >  Ich habe jetzt das Problem, dass ich gar nicht weiß,
> wie
> > ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> > betrachten will.
>
> Schau dir doch erst einmal das Verhalten des Integranden an
> den kritischen Stellen an, also z.B.
>  
> [mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].
>  
> Wenn dieser Limes endlich ist, kann an diesem kritischen
> Punkt gar nichts passieren. (Warum?)
>  
> Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,

Allerdings nur, wenn x gegen unendlich geht. An der linken Intervallgrenze (x=0) muss man schon mal etwas genauer hinsehen.
Gruß Abakus

> also geht es nur um den Limes
>  
> [mm]\limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].
>  
> Viele Grüße
>     Rainer


Bezug
                        
Bezug
Existenz des Integrals: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 18:26 Sa 10.04.2010
Autor: rainerS

Hallo!

> > Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,
> Allerdings nur, wenn x gegen unendlich geht. An der linken
> Intervallgrenze (x=0) muss man schon mal etwas genauer
> hinsehen.

Ja natürlich, ich meinte auch nur in der Umgebung von [mm] $x=\pi$. [/mm] An den Grenzen des Integrals muss man genauer hinsehen.

Viele Grüße
   Rainer



Bezug
                
Bezug
Existenz des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Sa 10.04.2010
Autor: MontBlanc

Hallo,

danke für eure Antworten.

> Hallo!
>  
> > Entscheiden Sie begründet, ob das folgende Integral
> > existiert (Versuchen Sie NICHT es zu bestimmen):
>  >  
> >
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> >  

> > Hallo,
>  >  
> > solche Aufgaben fallen mir generell immer sehr schwer, weil
> > ich nicht weiß, wann eine Singularität integrierbar ist
> > und wann nicht.
>  >  
> > Hier sind die kritischen Stellen, wenn der Nenner null
> > wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  >  Ich habe jetzt das Problem, dass ich gar nicht weiß,
> wie
> > ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> > betrachten will.
>
> Schau dir doch erst einmal das Verhalten des Integranden an
> den kritischen Stellen an, also z.B.
>  
> [mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].
>  
> Wenn dieser Limes endlich ist, kann an diesem kritischen
> Punkt gar nichts passieren. (Warum?)
>  
> Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,
> also geht es nur um den Limes
>  
> [mm]\limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].

Wenn x hier gegen [mm] \pi [/mm] geht, dann geht der Grenzwert gegen (-1). der andere Grenzwert ist sowieso endlich. Das sollte also eigentlich kein Problem sein. Nur eine Frage, wie kamst du auf die Umformung zu [mm] -\bruch{sin(x-\pi)}{x-\pi} [/mm] ?

So jetzt versuche ich mich mal an x=0

Also, wenn x gegen null geht, dann ist $ sin(x) [mm] \approx [/mm] x $ also habe ich

[mm] \bruch{(x+1)*x}{x^{3/2}*(x-\pi)} [/mm] dividiere ich jetzt durch [mm] x^{3/2} [/mm] dann erhalte ich [mm] \bruch{x^{1/2}+x^{-1/2}}{x-\pi} [/mm] das geht jetzt für kleine x gegen [mm] \bruch{-1}{x^{1/2}}. [/mm] Wäre also endlich. ergo integrierbar.

Für [mm] x\to\infty [/mm] bin ich mir jetzt nicht ganz sicher, ich würde sagen, dass der Grenzwert gegen null geht, kanns aber nicht wirklich begründen. Wie gehe ich da vor ?

> Viele Grüße
>     Rainer


Lg

Bezug
                        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Sa 10.04.2010
Autor: abakus


> Hallo,
>  
> danke für eure Antworten.
>  
> > Hallo!
>  >  
> > > Entscheiden Sie begründet, ob das folgende Integral
> > > existiert (Versuchen Sie NICHT es zu bestimmen):
>  >  >  
> > >
> >
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> >  

> > >  

> > > Hallo,
>  >  >  
> > > solche Aufgaben fallen mir generell immer sehr schwer, weil
> > > ich nicht weiß, wann eine Singularität integrierbar ist
> > > und wann nicht.
>  >  >  
> > > Hier sind die kritischen Stellen, wenn der Nenner null
> > > wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  >  >  Ich habe jetzt das Problem, dass ich gar nicht
> weiß,
> > wie
> > > ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> > > betrachten will.
> >
> > Schau dir doch erst einmal das Verhalten des Integranden an
> > den kritischen Stellen an, also z.B.
>  >  
> > [mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].
>  
> >  

> > Wenn dieser Limes endlich ist, kann an diesem kritischen
> > Punkt gar nichts passieren. (Warum?)
>  >  
> > Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,
> > also geht es nur um den Limes
>  >  
> > [mm]\limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].
>  
> Wenn x hier gegen [mm]\pi[/mm] geht, dann geht der Grenzwert gegen
> (-1). der andere Grenzwert ist sowieso endlich. Das sollte
> also eigentlich kein Problem sein. Nur eine Frage, wie
> kamst du auf die Umformung zu [mm]-\bruch{sin(x-\pi)}{x-\pi}[/mm] ?

Quadrantenbeziehúngen. Es gilt sin x= [mm] sin(\pi-x)=- sin(x-\pi). [/mm]

>  
> So jetzt versuche ich mich mal an x=0
>  
> Also, wenn x gegen null geht, dann ist [mm]sin(x) \approx x[/mm]
> also habe ich
>
> [mm]\bruch{(x+1)*x}{x^{3/2}*(x-\pi)}[/mm] dividiere ich jetzt durch
> [mm]x^{3/2}[/mm] dann erhalte ich [mm]\bruch{x^{1/2}+x^{-1/2}}{x-\pi}[/mm]
> das geht jetzt für kleine x gegen [mm]\bruch{-1}{x^{1/2}}.[/mm]

Hallo? [mm] x^{-1/2} [/mm] geht dann gegen unendlich.
Kürze lieber x im Bruch  [mm]\bruch{(x+1)*x}{x^{3/2}*(x-\pi)}[/mm], dann erhältst du  [mm]\bruch{(x+1)}{x^{1/2}*(x-\pi)}[/mm].
In der Nähe von 0 ist  [mm]\bruch{(x+1)}{(x-\pi)}[/mm] endlich, die Frage ist also, ob du [mm]\bruch{1}{x^{1/2}}[/mm] bis an die Null heran integrieren kannst.
Gruß Abakus

> Wäre also endlich. ergo integrierbar.
>  
> Für [mm]x\to\infty[/mm] bin ich mir jetzt nicht ganz sicher, ich
> würde sagen, dass der Grenzwert gegen null geht, kanns
> aber nicht wirklich begründen. Wie gehe ich da vor ?
>  
> > Viele Grüße
>  >     Rainer
>
>
> Lg


Bezug
                                
Bezug
Existenz des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Sa 10.04.2010
Autor: MontBlanc

Hi,

[mm] \bruch{1}{\wurzel{x}} [/mm] kann ich bis an die null heran integrieren. Das funktioniert also glaube ich, da es zu [mm] 2\wurzel{x} [/mm] integriert.

So, wenn [mm] x\to\infty [/mm] dann habe ich ist der Integrand nach Division durch [mm] \bruch{(x^{-1/2}+x^{-3/2})*sin(x)}{x-\pi}. [/mm] Der größte Term ist hier [mm] x^{-1/2} [/mm] und das ist integrierbar. Ich würde also sagen, dass auch das kein Problem sein sollte. Ist die Argumentation okay ?

Lg

Bezug
                                        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Sa 10.04.2010
Autor: abakus


> Hi,
>  
> [mm]\bruch{1}{\wurzel{x}}[/mm] kann ich bis an die null heran
> integrieren.

Stimmt.

> Das funktioniert also glaube ich, da es zu
> [mm]2\wurzel{x}[/mm] integriert.
>  
> So, wenn [mm]x\to\infty[/mm] dann habe ich ist der Integrand nach
> Division durch [mm]\bruch{(x^{-1/2}+x^{-3/2})*sin(x)}{x-\pi}.[/mm]
> Der größte Term ist hier [mm]x^{-1/2}[/mm] und das ist
> integrierbar. Ich würde also sagen, dass auch das kein
> Problem sein sollte. Ist die Argumentation okay ?
>  
> Lg

Ich denke schon. Du musst halt nur die ganzen Puzzleteile etwas strukturiert zusammenfügen.
Gruß Abakus


Bezug
                                        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 11.04.2010
Autor: rainerS

Hallo!

> Hi,
>  
> [mm]\bruch{1}{\wurzel{x}}[/mm] kann ich bis an die null heran
> integrieren. Das funktioniert also glaube ich, da es zu
> [mm]2\wurzel{x}[/mm] integriert.
>  
> So, wenn [mm]x\to\infty[/mm] dann habe ich ist der Integrand nach
> Division durch [mm]\bruch{(x^{-1/2}+x^{-3/2})*sin(x)}{x-\pi}.[/mm]
> Der größte Term ist hier [mm]x^{-1/2}[/mm] und das ist
> integrierbar. Ich würde also sagen, dass auch das kein
> Problem sein sollte. Ist die Argumentation okay ?

Das ist mir nicht klar. Hast du den Nenner vergessen oder nicht?

1. ist [mm] $x^{-1/2}$ [/mm] nicht bis [mm] $\infty$ [/mm] integrierbar, und 2. ist für [mm] $x\gg\pi$ [/mm]

[mm] \bruch{1}{x-\pi} \approx x^{-1} [/mm] ,

und damit ist der größte Term [mm] $x^{-3/2}$, [/mm] und der ist in der Tat bis [mm] $\infty$ [/mm] integrierbar.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de