www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Existenz diffbarer Funktion
Existenz diffbarer Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz diffbarer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Mi 12.07.2006
Autor: ttgirltt

Aufgabe
Es sei v: [mm] \IR \to \IR [/mm] und es gelte [mm] v(x)>x^{2}. [/mm] Man zeige dass es keine auf ganz  [mm] \IR [/mm] erklärte differenzierbare Funktion gibt die der Beziehung x'(t)=v(x(t)) genügt.
Hinweis betrachte y(t):= [mm] \bruch{-1}{x(t)} [/mm]

Hallo also ich muss ja 3 Fälle unterscheiden
[mm] x(t_{0})>0 [/mm]
[mm] x(t_{0})<0 [/mm]
[mm] x(t_{0})=0 [/mm]

Aber wie genau ich y damit in Beziehung bringe weiß ich nicht.
Ich hab ja y(t):= [mm] \bruch{-1}{x(t)} \Rightarrow [/mm] x(t):= [mm] \bruch{-1}{y(t)} [/mm]
aber wie bringe ich das mit den [mm] v(x)>x^{2} [/mm] x'(t)=v(x(t)) in Verbindung kann mir wer helfen?
.

        
Bezug
Existenz diffbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Mi 12.07.2006
Autor: PeterB

Hallo ttgirl,

ich fürchte das ist eine Trickaufgabe, angenommen es gibt eine solche Funktion x, dann folgt:

[mm] $x'(t)=v(x)>x^2\ge [/mm] 0$
also ist x streng monoton wachsend, insbesondere hat x höchstens eine Nullstelle.

aber auch, da wo y definiert ist (d.h. außerhalb der Nullstellen von x), gilt:

[mm] $y'(t)=\frac [/mm] {x'} [mm] {x^2}=\frac {v(x)}{x^2} [/mm] >1$

Daher ist dort auch y monoton wachsend, mit Ableitung größer 1, also hätte y eine Nullstelle, falls y auf ganz [mm] $\IR$ [/mm] definiert wäre, also hat x eine Nullstelle [mm] $t_0$. [/mm] Dann gilt aber für [mm] $t>t_0$ [/mm] dass $x(t)>0$ nach Definition von y also $y(t)<0$. Aber die Ableitung von $y$ ist größer 1, also gibt es $s>t$ so, dass $y(s)>0$. Widerspruch.

Eine allgemeinere Strategie kann ich hier aber nicht sehen.

Grüße
Peter

p.s.:Hier kann man sich nicht verrechen, juchhu!

Bezug
                
Bezug
Existenz diffbarer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 12.07.2006
Autor: ttgirltt

Ah danke...
Muss ich aber nicht auch den Fall [mm] x(t_{0})<0 [/mm] und somit [mm] y(t_{0})>0 [/mm] betrachten(läuft auf den selben Widerspruch hinaus) und was ist mit dem Fall das beide gleich 0

Bezug
                        
Bezug
Existenz diffbarer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 12.07.2006
Autor: PeterB

Hi,

[mm] $x(t_0)$ [/mm] ist nach meiner Definition immer 0. Und wenn ich das richtig verstehe ist nach der Existenz einer Funtion auf ganz [mm] $\IR$ [/mm] gefragt. Ich habe ja schon vorher gezeigt, dass diese dann streng monoton wachsend ist, und genau eine Nullstelle hat, daher ist für [mm] $t>t_0$ [/mm] immer $x(t)>0$. Das sollte reichen.

Grüße
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de