www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Existenz eines Punktes
Existenz eines Punktes < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz eines Punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 So 23.09.2007
Autor: Framl

Aufgabe
Sei [mm] $f\in [/mm] C[0,1]$ mit $f(0)=f(1)$. Zeige, dass [mm] $\forall n\in\mathbb{N}\backslash \{0\}\:\exists x\in [0,1-\frac{1}{n}]$ [/mm] mit [mm] $f(x)=f(x+\frac{1}{n})$ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

ich habe bei dieser Aufgabe folgende Lösungsidee:

Ist $f$ konstant [mm] $\Rightarrow$ [/mm] Behauptung.

Sei also oBdA $f$ nicht konstant [mm] $\Rightarrow [/mm] f$ hat Extrempunkt [mm] $x_0\in (0,1)\Rightarrow \forall x\in (0,x_0) \exists\:y\in (x_0,1)$ [/mm] mit [mm] $f(x)=f(y)\Rightarrow...$. [/mm]

Bin ich hier auf dem richigen Weg und wenn ja, wie kann ich hier weitermachen?


Gruß Framl



        
Bezug
Existenz eines Punktes: Lösung!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 So 23.09.2007
Autor: Deuterinomium

Hi!
Ich wüßte nicht wie du da weitermachen sollst, aber vielleicht probiers du es einfach mal mit Induktion über n.

Vergiss es, war ne dumme Idee!

Probier es mal so:
Definiere [mm] g(x)=f(x)-f(x+1/n) [/mm]. Sei [mm] n \in \IN [/mm] beliebig.
Angenommen g(x)>0 für [mm] x \in [0,1-1/n] [/mm], dann müsste gelten:
[mm] f(0)>f(\bruch{1}{n})>f(\bruch{2}{n})>...>f(\bruch{n-1}{n})>f(\bruch{n}{n})=f(1) [/mm]
im Wiederspruch zu f(1)=f(0). Auch die Annahme g(x)<0 führst du so zum Widerspruch (> durch< ersetzen). Dann bleibt ja nur g(x)=0 für [mm] x \in [0,1-1/n] [/mm] und damit die Behauptung.

Allerdings bin ich mir da nicht zu hundertprozent sicher, deswegen poste ich es nur als Mitteilung

Gruß
Deuterinomium

Bezug
                
Bezug
Existenz eines Punktes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 So 23.09.2007
Autor: Framl


> Hi!
> Ich wüßte nicht wie du da weitermachen sollst, aber
> vielleicht probiers du es einfach mal mit Induktion über
> n.
>  
> Vergiss es, war ne dumme Idee!
>  
> Probier es mal so:
>  Definiere [mm]g(x)=f(x)-f(x+1/n) [/mm]. Sei [mm]n \in \IN[/mm] beliebig.
>  Angenommen g(x)>0 für [mm]x \in [0,1-1/n] [/mm], dann müsste
> gelten:
>  
> [mm]f(0)>f(\bruch{1}{n})>f(\bruch{2}{n})>...>f(\bruch{n-1}{n})>f(\bruch{n}{n})=f(1)[/mm]
> im Wiederspruch zu f(1)=f(0). Auch die Annahme g(x)<0
> führst du so zum Widerspruch (> durch< ersetzen). Dann
> bleibt ja nur g(x)=0 für [mm]x \in [0,1-1/n][/mm] und damit die
> Behauptung.
>  
> Allerdings bin ich mir da nicht zu hundertprozent sicher,
> deswegen poste ich es nur als Mitteilung
>  
> Gruß
>  Deuterinomium


Das sieht gut aus. Danke :-)


Bezug
        
Bezug
Existenz eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 So 23.09.2007
Autor: Deuterinomium

Hi!

Schau mal in meine Mitteilung!

Gruß Deuterinomium

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de