www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Existenz limsup
Existenz limsup < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz limsup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 23.11.2011
Autor: physicus

Guten Abend

Ich tue mich an folgendem Beweis etwas schwer:

Wenn $ [mm] (x_n)$ [/mm] eine beschränkte Folge ist, dann existiert der limsup. Wie zeigt man dies?

Danke und Gruss

physicus

        
Bezug
Existenz limsup: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mi 23.11.2011
Autor: kushkush

Hallo,



Mit [mm] $(x_{n})_{n\in\mathbb{N}}$ [/mm] beschränkt, definiere:
[mm] $$(y_{n})_{n\in \IN} [/mm] := sup [mm] \{x_{k} : k \ge n \},X_{n} [/mm] := [mm] \{x_{n},x_{n+1}... \} [/mm] $$also : [mm] $$y_{n} [/mm] = sup [mm] X_{n}$$ [/mm]

da [mm] $$X_{n+1} \subset X_{n}$$ [/mm] gilt auch: [mm] $y_{n+1}\le y_{n}$ [/mm] für jedes [mm] $n\in \IN$, [/mm] also ist die Folge [mm] (y_{n}) [/mm] fallend. Da [mm] $(x_{n}) [/mm] beschränkt ist:

[mm] $$\exists [/mm] M > 0 : [mm] |x_{n}|\le [/mm] M \ [mm] \forall [/mm] n [mm] \in \IN [/mm] $$ Das heisst: $$-M [mm] \le x_{n} \le y_{n} \le y_{1} [/mm] $$

Folglich ist [mm] $y_{n}$ [/mm] beschränkt.  Da [mm] $(y_{n})$ [/mm] eine fallende beschränkte Folge ist, konvergiert diese nach dem Satz der monotonen Konvergenz.

Also existiert [mm] $\lim y_{n} [/mm] = [mm] \limsup x_{n}$. [/mm]



Gruss
kushkush

Bezug
                
Bezug
Existenz limsup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 So 04.12.2011
Autor: physicus

Ich habe nochmals eine Anschlussfrage an obige,

wenn ich weiss, dass

$ lim inf [mm] x_n \le [/mm] M $ wobei $ M $ eine Konstante ist. Wie kann ich zeigen, dass für alle $ [mm] \epsilon [/mm] > 0 $ gibt es ein $ N $ so dass für $ [mm] n\ge [/mm] N $ gilt:

$ [mm] x_n \le M+\epsilon [/mm] $ ?



Bezug
                        
Bezug
Existenz limsup: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 So 04.12.2011
Autor: kamaleonti

Hallo,
> Ich habe nochmals eine Anschlussfrage an obige,
>  
> wenn ich weiss, dass
>  
> [mm]lim inf x_n \le M[/mm] wobei [mm]M[/mm] eine Konstante ist. Wie kann ich
> zeigen, dass für alle [mm]\epsilon > 0[/mm] gibt es ein [mm]N[/mm] so dass
> für [mm]n\ge N[/mm] gilt:
>  
> [mm]x_n \le M+\epsilon[/mm] ?

Das könntest du nur zeigen, wenn es sich beim [mm] \lim\inf [/mm] gleichzeitig um den Grenzwert der Folge handelt. Also was genau willst Du zeigen?

LG

Bezug
                                
Bezug
Existenz limsup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 So 04.12.2011
Autor: physicus

Hm...nein das weiss ich aber nicht.

Alles was ich weiss, ist:

$ [mm] x_n [/mm] $ beschränkt und eben

$ lim inf [mm] x_n \le [/mm] M $. Daraus wird dann das obige gefolgert.



Bezug
                                        
Bezug
Existenz limsup: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mo 05.12.2011
Autor: fred97

Schau hier:

https://matheraum.de/read?i=846414

FRED

Bezug
                        
Bezug
Existenz limsup: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Mo 05.12.2011
Autor: fred97


> Ich habe nochmals eine Anschlussfrage an obige,
>  
> wenn ich weiss, dass
>  
> [mm]lim inf x_n \le M[/mm] wobei [mm]M[/mm] eine Konstante ist. Wie kann ich
> zeigen, dass für alle [mm]\epsilon > 0[/mm] gibt es ein [mm]N[/mm] so dass
> für [mm]n\ge N[/mm] gilt:
>  
> [mm]x_n \le M+\epsilon[/mm] ?

Gar nicht, denn das ist falsch. Nimm [mm] x_n=(-1)^n [/mm] . Dann ist lim inf [mm] x_n=-1. [/mm]

Jetzt nimm M=0 und [mm] \epsilon=1/2. [/mm]

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de