Existenz von Teilmengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:32 Sa 20.10.2007 | Autor: | Elfe |
Aufgabe | Sei X eine Menge. Gibt es Teilmengen A, B, C von X, so dass
A [mm] \cap [/mm] B [mm] \not= \emptyset [/mm] ?
A [mm] \cap [/mm] C = [mm] \emptyset [/mm] ?
(A [mm] \cap [/mm] B) - C = [mm] \emptyset [/mm] ? |
Hallo!
Ich hab diese Aufgabe in einer meiner ersten Übungen in der Uni bekommen und würd nun gern ein paar Tips kriegen zur Antwort auf diese Frage. Also an sich würde ich sagen, dass es das erste auf jeden Fall gibt. Das zweite gibt es nur, wenn A und C disjunkt sind. Und das letzte... das müsste es meiner Ansicht nach ja auch geben. Aber jetzt weiß ich gar nicht wirklich, was von mir nun gefordert ist durch die Frage. Also ob ich beweisen soll oder wie oder was. Wäre für Hilfe wirklich dankbar!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
lg Elfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:54 Sa 20.10.2007 | Autor: | koepper |
Hallo,
mal dir doch einfach mal ein Mengendiagramm. Daran siehst du das am schnellsten.
Damit $(A [mm] \cap [/mm] B) [mm] \setminus [/mm] C = [mm] \emptyset$ [/mm] sein kann, muß C mindestens die Elemente enthalten, die in $A [mm] \cap [/mm] B$ enthalten sind, also $(A [mm] \cap [/mm] B) [mm] \subseteq [/mm] C$. Wegen $A [mm] \cap [/mm] B [mm] \neq \emptyset$ [/mm] gibt es aber ein $x [mm] \in [/mm] A [mm] \cap [/mm] B$ so daß $x [mm] \in [/mm] C$ ist. Damit folgt jedoch $A [mm] \cap [/mm] C [mm] \neq \emptyset.$
[/mm]
Also ist das nicht machbar.
> Sei X eine Menge. Gibt es Teilmengen A, B, C von X, so dass
> A [mm]\cap[/mm] B [mm]\not= \emptyset[/mm] ?
> A [mm]\cap[/mm] C = [mm]\emptyset[/mm] ?
> (A [mm]\cap[/mm] B) - C = [mm]\emptyset[/mm] ?
> Hallo!
>
> Ich hab diese Aufgabe in einer meiner ersten Übungen in der
> Uni bekommen und würd nun gern ein paar Tips kriegen zur
> Antwort auf diese Frage. Also an sich würde ich sagen, dass
> es das erste auf jeden Fall gibt. Das zweite gibt es nur,
> wenn A und C disjunkt sind. Und das letzte... das müsste es
> meiner Ansicht nach ja auch geben. Aber jetzt weiß ich gar
> nicht wirklich, was von mir nun gefordert ist durch die
> Frage. Also ob ich beweisen soll oder wie oder was. Wäre
> für Hilfe wirklich dankbar!
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> lg Elfe
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:34 Sa 20.10.2007 | Autor: | Elfe |
Hallo,
also danke erstmal, nach ein bisschen nachdenken ist mir das nun auch klar geworden, was du erklärt hast. Nun stellt sich mir aber die Frage: Und wie schreibe ich das formell richtig auf?
Würde ich die einzelnen Teilmengen jeweils nochmal so aufschreiben:
z.B.:
A [mm] \cap [/mm] B := [mm] \{x \in X| x \in A \wedge x \in B\} [/mm] ? Und dann da irgendwie einen Widerspruch?
Ach und noch eine Frage:
Ist das folgende richtig oder hätte ich da eine Klammer nicht beachtet oder so?
(A [mm] \cap [/mm] B) - C := [mm] \{x \in X| x \in A \wedge x \in B \wedge x \not\in C\} [/mm]
lg Elfe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:55 Sa 20.10.2007 | Autor: | koepper |
Hallo Elfe,
> sich mir aber die Frage: Und wie schreibe ich das formell
> richtig auf?
> Würde ich die einzelnen Teilmengen jeweils nochmal so
> aufschreiben:
> z.B.:
> A [mm]\cap[/mm] B := [mm]\{x \in X| x \in A \wedge x \in B\}[/mm] ? Und
> dann da irgendwie einen Widerspruch?
würde ich nicht machen, meine Erklärung ist im Prinzip so auch beweistauglich:
Sei $(A [mm] \cap [/mm] B) [mm] \setminus [/mm] C = [mm] \emptyset$, [/mm] dann muß C mindestens die Elemente enthalten, die in $A [mm] \cap [/mm] B$ enthalten sind, also $(A [mm] \cap [/mm] B) [mm] \subseteq [/mm] C$. Wegen $A [mm] \cap [/mm] B [mm] \neq \emptyset$ [/mm] gibt es aber ein $x [mm] \in [/mm] A [mm] \cap [/mm] B$ so daß $x [mm] \in [/mm] C$ ist. Damit folgt jedoch $A [mm] \cap [/mm] C [mm] \neq \emptyset.$
[/mm]
> Ach und noch eine Frage:
> Ist das folgende richtig oder hätte ich da eine Klammer
> nicht beachtet oder so?
> (A [mm]\cap[/mm] B) - C := [mm]\{x \in X| x \in A \wedge x \in B \wedge x \not\in C\}[/mm]
nein, das ist OK.
Die Mengenoperationen alle so zu schreiben, ist aber ziemlich aufwendig und umständlich.
LG
Will
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:03 Sa 20.10.2007 | Autor: | Elfe |
Hallo Will,
danke für die Hilfe! War wirklich gut und ich habe jetzt einfach deinen Rat befolgt und das so ziemlich schriftlich ausgeführt. Ich hoffe das reicht meinem Korrektor so!
lg Elfe
|
|
|
|