www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Explizite Formel gesucht
Explizite Formel gesucht < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Explizite Formel gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Fr 12.08.2005
Autor: Teletubyyy

Hallo,

Ich komme mit folgender Aufgabe (auch wenn sie eigentlich gernicht so schwierig sein dürft [keineahnung]) überhauptnicht zurecht:

Man bilde die Folge [mm] $(x_n)$, [/mm] deren Glieder für [mm] $n\ge1$ [/mm] durch die Formel [mm]x_{n+1}=ax_n+bx_{n-1}[/mm] geliefert werden, in welcher a und b gegebene positive Zahlen und die Anfangsglieder [mm]x_0,x_1=0,1;=1,0;=1,\alpha;=1,\beta[/mm] oder beliebig sind [mm] (\alpha [/mm] und [mm] \beta [/mm] sollen hierbei die positive und die negative Wurzel der Gleichung [mm]x^2=ax+b[/mm] bedeuten). Man gebe für jeden der Fälle eine explizite Formel für [mm] $x_n$. [/mm]

Ich hab den allgemeinen Fall von Mapel durchrechnen lassen und kam dann auf:


[mm]x_n=\frac{\left(2bx_0-x_1a-x_1\wurzel{a^2+4b}+a^2x_0+ax_0\wurzel{a^2+4b}\right)*\left(-\frac{2b}{a+\wurzel{a^2+4b}}\right)^n}{\wurzel{a^2+4b}\left(a+\wurzel{a^2+4b}\right)}+\frac{\left(-2bx_0+x_1a-x_1\wurzel{a^2+4b}-a^2x_0+ax_0\wurzel{a^2+4b}\right)*\left(-\frac{2b}{a-\wurzel{a^2+4b}}\right)^n}{\wurzel{a^2+4b}\left(a-\wurzel{a^2+4b}\right)}[/mm]



Meine einzigen Gedanken bei der Aufgabe waren, dass [mm] $(x_n)$ [/mm] irgendwie der Fabonacci Folge (mit a=b=1) ähnelt. Ansonsten hab ich aber keine Idee wie ich die Aufgabe auf normelem Weg - (und nicht mit Mapel und ggf. Vollständiger Induktion) lösen kann. Insbesondere frag ich mich wiso die Diskriminante [mm] $\wurzel{a^2+4b}$ [/mm] so of auftaucht [keineahnung]
Es würd mir vermutlich schon reichen, wenn mir jemand einen Tipp für [mm] x_0=0, x_1=1 [/mm] gibt, da der Rest weitestgehend analog gehen dürfte?!?



Gruß Samuel

        
Bezug
Explizite Formel gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Fr 12.08.2005
Autor: Hanno

Hallo Samuel!

Du hast doch das Buch "Problem Solving Strategies" von Engel. Im Kapitel über Folgen wird als allerstes gezeigt, wie man homogene Rekursionen zweiten Grades löst. Die paar Seiten solltest du einfach nachlesen; die von Maple ausgegebene Formel scheint mir genau das zu sein, was man erhält, wenn man in der im Buch und allgemein bekannten Formel zwei Variablen durch Ausdrücke in $a,b$ ersetzt.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Explizite Formel gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Fr 12.08.2005
Autor: Teletubyyy

Hallo Hanno,

Hast recht! [bonk] steht genauso in dem Buch drin!!
Wíso allerdings eine derartige Aufgabe bei den Übungsaufgaben zur Axiomatischer Einführung reeller Zahlen und rationaler Zahlenfolgen, auftaucht, kann ich immernoch nicht ganz nachvollziehen ;-).
Dank dir für die schnelle Hilfe


Gruß Samuel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de