www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Exponentailgleichungen
Exponentailgleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentailgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 17.02.2004
Autor: Jacque

Hab 2 Aufgaben die ich überhaupt nicht verstehe. Hab versucht sie an Beispielen anhand des Buches zu lösen aber irgendwie bekomm ich nicht das raus was raus kommen soll.

1. [mm] 3*1,4^3t=2^t-1 [/mm]
So habe ich gerechnet
lg(3) + 3t* lg(1,4) = (t-1) * lg(2)
lg(3) + lg (2) = -3t * lg(1,4) + t * lg(2)

ab da komm ich nicht weiter bei der zweiten aufgabe genau so

2. [mm] 4*5^x-1 [/mm] = [mm] 10^x+1 [/mm]

Bedanke mich jetzt schon mal für die Hilfe

        
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Antwort) fertig Status 
Datum: 19:46 Di 17.02.2004
Autor: Marc

Hallo Jacque,

> 1. [mm] 3*1,4^3t=2^t-1 [/mm]

du meinst hier 3*1,4^(3t)=2^(t-1), weil [mm] 3*1,4^3t=2^t-1 [/mm] eigentlich das bedeutet: [mm] 3*(1,4^3)*t=(2^t)-1. [/mm]

>  So habe ich gerechnet
>  lg(3) + 3t* lg(1,4) = (t-1) * lg(2)
>  lg(3) + lg (2) = -3t * lg(1,4) + t * lg(2)

Da ist nichts dran auszusetzen.
Als nächstes könntest (müßtest :-)) du jetzt auf der rechten Seite ein t ausklammern, und sodann durch das Ausgeklammerte dividieren. Dann müßte auch das Ergebnis rauskommen.

> ab da komm ich nicht weiter bei der zweiten aufgabe genau
> so
>  
> 2. [mm] 4*5^x-1 [/mm] = [mm] 10^x+1 [/mm]

Hier meinst du wieder 4*5^(x-1) = 10^(x+1), nehme ich an.
Aber bringe diese Gleichung doch auch erst mal so weit wie oben.

Bitte melde dich, ob du jetzt auf das Ergebnis kommst oder ob es immer noch Probleme gibt.

Bis gleich,
Marc.

Bezug
                
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Di 17.02.2004
Autor: Jacque

Ja bei der eersten hatte ich das t auch schon ausgeklammert hab komme trotzdem nicht auf das Ergebnis und bei der 2. Aufgabe war ich auch schon so weit wie bei der ersten aber da kommt auch immer das falsche raus.

Bezug
                        
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Di 17.02.2004
Autor: Marc

Hallo Jacque,

dann schreib' doch mal, was raus kommen soll.

Marc.

Bezug
                                
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Frage) beantwortet Status 
Datum: 20:07 Di 17.02.2004
Autor: Jacque

Also bei der ersten Aufgabe soll -5,66 rauskommen und bei der anderen -3,64.

Bezug
                                        
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Antwort) fertig Status 
Datum: 20:20 Di 17.02.2004
Autor: Marc

Hallo Jacque,

bei der ersten habe ich das aber auch raus, mit deinem Rechenweg:

Wir hatten:

lg(3) + lg (2) = -3t * lg(1,4) + t * lg(2)

Ausklammern von t auf der rechten Seite:

<=> lg(3) + lg (2) = t*(-3 lg(1,4) + lg(2))

Dividieren durch das Ausgeklammerte:

[mm] $\gdw \bruch{\lg(3) + \lg(2)}{-3 \lg(1,4) + \lg(2)} [/mm] = t$

[mm] $\gdw t\approx \bruch{0,778}{-0,137}\approx [/mm] -5,66$

Welchen Fehle du gemacht hast, kann ich dir nicht sagen, ich vermute aber mal, du hast irgendetwas beim Ausrechnen des Bruches falsch gemacht.

Dann rechne uns doch noch mal die zweite Aufgabe (mit denselben Zwischenschritten wie bei der ersten) vor, dann kann ich dir besser sagen, was du falsch machst.

Bis gleich,
Marc

Bezug
                                                
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Frage) beantwortet Status 
Datum: 21:14 Di 17.02.2004
Autor: Jacque

Also

lg (4) + (x-1) * lg(5) = (x+1) * lg(10)
lg(4) = (x+1) * lg(10) - (x-1) * lg(5)
lg(4) - lg(10) + lg(5) = -lg(10) - lg(5)

so aber da kommt was völlig anderes raus als es eigentlich sein muss

Bezug
                                                        
Bezug
Exponentailgleichungen: Exponentialgleichungen
Status: (Antwort) fertig Status 
Datum: 21:26 Di 17.02.2004
Autor: Marc

Hallo Jacque,

4*5^(x-1) = 10^(x+1)

> lg (4) + (x-1) * lg(5) = (x+1) * lg(10)
>  lg(4) = (x+1) * lg(10) - (x-1) * lg(5)

[ok]

>  lg(4) - lg(10) + lg(5) = -lg(10) - lg(5)

[notok] Hier ist ein kleiner Fehler drin, und zwar müßte es -lg(5) auf der linken Seiten lauten (auf der rechten Seite fehlt zudem ein x, aber das hast wahrscheinlich nur vergessen hinzuschreiben), denn:
lg(4) = (x+1) * lg(10) - (x-1) * lg(5)
<=> lg(4) = x*lg(10)+lg(10)- x*lg(5)+lg(5)
<=> lg(4)-lg(10)-lg(5) = x*lg(10)- x*lg(5)

Übrigens ist lg(10)=1, so dass sich die Gleichung vereinfacht zu:

<=> lg(4)-1-lg(5) = x- x*lg(5)
<=> lg(4)-1-lg(5) = x*(1- lg(5))
<=> [mm] $\bruch{\lg(4)-1-\lg(5)}{1-\lg(5)}=x$ [/mm]
<=> $x [mm] \approx \bruch{-1,097}{0,301}$ [/mm]
<=> $x [mm] \approx [/mm] -3,64$

Und das sollte ja auch raus kommen. Bis auf den Vorzeichenfehler war deine Lösung doch gar nicht so schlecht.

Bei weiteren Unklarheiten melde dich bitte wieder.

Alles Gute,
Marc.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de