www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialfkt., Halbwertszeit
Exponentialfkt., Halbwertszeit < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfkt., Halbwertszeit: Frage, Hilfe :-(
Status: (Frage) beantwortet Status 
Datum: 12:16 Di 07.12.2004
Autor: Chocbooty83

1)Wie gross ist (nährungsweise) die Halbwerstzeit eines radioaktiven Stoffes, für dessen Zerfall die Exponentialfunktion gilt  

I = Io mal 0,917 hoch t  (t in Minuten)

2) 14                                                                                                      14
         C        hat eine Halbwertszeit von 5730 Jahren. Der Zerfall von         C
      6                                                                                                         6
                  vollzieht sich nach dem bekannten Gesetz für die exponentielle  Abnahme I = Io mal b hoch t (t in Jahren).
Wie bestimme ich nach der oben gezeigten Methode den Wert von b ( auf 6 Dezimalen)?????

        
Bezug
Exponentialfkt., Halbwertszeit: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 12:56 Di 07.12.2004
Autor: Loddar

Hallo Chocbooty83,

[willkommenmr] !!!

Da werden wir Dir mal bei Aufgabe 1 unter die Arme greifen. Dann sollte auch Aufgabe 2 machbar sein.

Deine gegebene Funktion lautet also:
$I(t) = [mm] I_0 [/mm] * [mm] 0,917^t$ [/mm]

Gesucht ist die Halbwertzeit [mm] $t_H$; [/mm] d.h. genau die Zeit, in der die (Anfangs-)Stoffmenge sich genau halbiert.
Es gilt also: [mm] $I(t_H) [/mm] = 0,5 * [mm] I_0$. [/mm]

Wenn wir das jetzt einsetzen in unsere Funktionsgleichung und anschließend durch [mm] $I_0$ [/mm] teilen, erhalten wir eine Gleichung mit nur noch einer Unbekannten :-)

$0,5 * [mm] I_0 [/mm] = [mm] I_0 [/mm] * [mm] 0,917^{t_H}$ [/mm]   |  $: [mm] I_0$ [/mm]
$0,5  = [mm] 0,917^{t_H}$ [/mm]

Jetzt stört natürlich, daß unsere Unbekannte [mm] $t_H$ [/mm] im Exponenten steht.
Dafür wenden wir auf beiden Seiten die ln-Funktion an
(Du kannst hier auch jeden anderen Logarithmus benutzen. Es empfiehlt sich entweder der natürliche Logarithmus ln oder der dekadische Logarithmus lg, da diese beiden auf dem Taschenrechner vertreten sind!)

$0,5  = [mm] 0,917^{t_H}$ [/mm]  | ln
$ln(0,5)  = [mm] ln(0,917^{t_H})$ [/mm]

Nun das Logarithmusgesetz $log [mm] a^m [/mm] = m * log a$ anwenden:
$ln(0,5)  = [mm] t_H [/mm] * ln(0,917)$

Von hier an sollte es doch alleine machbar sein, indem Du weiter nach [mm] $t_H$ [/mm] auflöst, oder?

Grüße Loddar





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de