www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:29 So 08.06.2008
Autor: mathegenie84

Aufgabe
Eine einzelne Krebszelle wird einer Maus injiziert. Am Tag darauf sind durch Zellteilung bereits 5 Zellen vorhanden, wiederum einen Tag später bereits 25 Zellen.
a) Bestimme den Funktionstherm der zugehörigen Exponentialfunktion, die die Menge vorhandener Krebszellen in Abhängigkeit von der jeweiligen Zeitspanne gemessen in Tagen beschreibt.
b) Ein hochwirksames Gegenmittel steht zur Verfügung. Wann muss es spätestens eingesetzt werden, um die Maus am Leben zu erhalten? Hinweis: Man nimmt an, dass 1 Mio. Krebszellen tödlich sind. Berechne den Zeitpunkt für den Einsatz des Gegenmittels auf 2 Dezimalen genau.
c) Das eben erwähnte Gegenmittel tötet 91 % aller Krebszellen. Angenommen, das Mittel wurde gespritzt, als die Anzahl der Krebszellen 900000 betrug. Wann muss erneut gespritzt werden? Beachte den Hinweis zu Teil b. Berechne den Zeitpunkt auf 1 Dezimale genau.  

Hallo Zusammen,

kann mir vielleicht jemand bei der Lösung der Aufgaben helfen. Wäre echt super.

Grüße
Esther

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 So 08.06.2008
Autor: AbraxasRishi

Hallo Esther!

Hier musst du erstmal eine Funktionsgleichung formulieren. Ich denke der Wachstumsfaktor ist hier 5, weil am 0. Tag wird eine Krebszelle injiziert also y = [mm] 1*5^0. [/mm] Am 1. Tag sind bereits y = [mm] 1*5^1 [/mm] Zellen vorhanden, am 2. Tag schließlich schon 25.

Als allgemeine Funktion ausgedrückt:

y = [mm] 1*5^x [/mm]

Nun kannst du alle weiteren Fragestellungen behandeln:


z.B b) hier kannst du eine Gleichung formulieren.(Der y-Wert(Zellen) ist dir ja bekannt, du suchst den x-Wert(Tage)).

[mm] 1000000=1*5^x [/mm]

Jetz musst du dir die Frage stellen 5 hoch wieviel ist eine Million.

Dazu musst du den Logarithmus von einer Million zur Basis 5 berechnen, also [mm]x=\bruch{log(1000000)}{log(5)}[/mm]

Natürlich ist der Wert den du jetzt erhälst jener an der die Krebszellen bereits eine tödliche Menge ereicht haben. Also muss der Zeitpunkt, an dem das Gegenmittel gespritzt wird kleiner diesem Wert sein.

Nun habe ich glaube ich genug gesagt..hoffe es hat dir geholfen :-)

Gruß

Angelika

Bezug
                
Bezug
Exponentialfunktion: Frage1
Status: (Frage) beantwortet Status 
Datum: 18:20 So 08.06.2008
Autor: mathegenie84

Also wäre die Lösung zu b, dann

log5 (1000000)=x
x= 8,58

???

Wie muss ich bei Teil c vorgehen???


Bezug
                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 So 08.06.2008
Autor: koepper


> Also wäre die Lösung zu b, dann
>  
> log5 (1000000)=x
>  x= 8,58

ja.

Bei c.) berechne, wie viele Krebszellen übrig sind und dann, wie lange es davon ausgehend dauern würde, bis wieder 1000000 erreicht sind.

LG
Will

Bezug
                                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 So 08.06.2008
Autor: mathegenie84

zu c)
was muss ich den mit den 900 000 rechnen, oder brauche ich die gar nicht???Irgendwie verwirrt mich die Aufgabe, weiß nicht so richtig was ich da rechnen muss.
Kann mir vlt jemand weiterhelfen???



Bezug
                                        
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 So 08.06.2008
Autor: mathegenie84

Meine Überlegung:

900000 * 0,091 = 81.900

1000 000 = 81900 * [mm] 5^{x} [/mm]

x = 1,55

????
Könnte das evtl zu aufgabenteil c passen????



Bezug
                                                
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mo 09.06.2008
Autor: koepper


> Meine Überlegung:
>  
> 900000 * 0,091 = 81.900
>  
> 1000 000 = 81900 * [mm]5^{x}[/mm]
>  
> x = 1,55
>  
> ????
>  Könnte das evtl zu aufgabenteil c passen????

berechne erst 9% der 900000. Die bleiben übrig.
Dann wäre der Ansatz OK.

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de