www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Exponentialfunktion
Exponentialfunktion < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Fr 03.02.2012
Autor: Kuriger

Hallo

Ich habe da ein Resultat (Musterresultat , jedoch bezweifle ich dessen Richtigkeit.
Vielleicht kann mir jemand bestätigen ob es stimmt ode rnicht....


Mit welcher Wahrscheinlichkeit wird ein bauteil, das eine mittlere Lebensdauer von 1000 Tagen hat älter als 500 Tage?
Resultat: 0.606531

Danke

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Fr 03.02.2012
Autor: Gonozal_IX

Hiho,

trag doch mal die Sachen zusammen:
Aufgrund deines Themas geh ich mal davon aus, dass die Lebensdauer X exponentialverteilt ist.

Nun weißt du: $E[X] = 1000 [mm] \Rightarrow \lambda [/mm] = [mm] \ldots$ [/mm]

Berechne nun $P[X > 500] = 1 - [mm] P[X\le [/mm] 500] = [mm] \ldots$ [/mm]

MFG,
Gono.


Bezug
                
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Fr 03.02.2012
Autor: Kuriger

Hallo

P (x [mm] \ge [/mm] 500) = 1 - [mm] e^{-\bruch{500}{1000}} [/mm] = 0.393


?

Gruss Kuriger

Bezug
                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Fr 03.02.2012
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
> P (x [mm]\ge[/mm] 500) = 1 - [mm]e^{-\bruch{500}{1000}}[/mm] = 0.393
>  
>
> ?
>



Hier muss Du doch berechnen:

[mm]P(x > 500) = 1 -P(x \le 500)[/mm]


> Gruss Kuriger


Gruss
MathePower

Bezug
                                
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Fr 03.02.2012
Autor: Kuriger

Und wie kann ich das berechnen?

Bezug
                                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Fr 03.02.2012
Autor: dennis2

Wie lautet die Verteilungsfunktion bei der Exponentialverteilung?

Bezug
                                                
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Fr 03.02.2012
Autor: Kuriger

Da stehe ich wohl schon an...

Bezug
                                                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Fr 03.02.2012
Autor: Gonozal_IX

Hiho,

> Da stehe ich wohl schon an...

nö.
Du hast einfach schlampig gearbeitet.

Korrekt ist:

$P(X [mm] \le [/mm] 500) =  1 - [mm] e^{-\bruch{500}{1000}} [/mm] $

Du sollst aber berechnen:

$P(X > 500) =  1 - P(X [mm] \le [/mm] 500)$

Das stand alles nun schon da.
Nun ist es nur noch einsetzen und Klammern auflösen und da machst du die ganze Zeit deinen Fehler.
Also einsetzen und richtig ausrechnen:

$P(X > 500) =  1 - P(X [mm] \le [/mm] 500) = [mm] \ldots$ [/mm]


MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de