www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Exponentialfunktionen
Exponentialfunktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 So 23.05.2004
Autor: Christa

Ich hab' nu diese Aufgabe:

Berechne die Nullstellen folgender Funktionen:

a)[mm]f(x)=3^x-2^x[/mm]
b)[mm]f(x)=\bruch{1}{2}2^x+e^{-x}[/mm]
c)[mm]f(x)=\bruch{1}{3}2^x+\bruch{1}{2}3^x[/mm]

Zu a) also da hab' ich raus dass [mm](\bruch{3}{2})^x = 1[/mm] Und das kann ja dann nur 0 sein.

bei b) Hingegen bekomme ich nix wirkliches heraus, ebenfalls bei c)....wie mach ich das?! HÜLFEE!!!!

Liebe Grüße
Christa

        
Bezug
Exponentialfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 23.05.2004
Autor: Marc

Hallo Christa,

> Berechne die Nullstellen folgender Funktionen:
>  
> a)[mm]f(x)=3^x-2^x[/mm]
>  b)[mm]f(x)=\bruch{1}{2}2^x+e^{-x}[/mm]
>  c)[mm]f(x)=\bruch{1}{3}2^x+\bruch{1}{2}3^x[/mm]
>  
> Zu a) also da hab' ich raus dass [mm](\bruch{3}{2})^x = 1[/mm] Und
> das kann ja dann nur 0 sein.

[ok]

> bei b) Hingegen bekomme ich nix wirkliches heraus,
> ebenfalls bei c)....wie mach ich das?! HÜLFEE!!!!

Mit demselben "Trick", den ih dir auch schon bei der anderen Aufgabe (der mit der Verzinsung) gegeben habe:

[mm] $a^b=\left(e^{\ln a}\right)^b$ [/mm]

Damit lautet die zweite Aufgabe:
[mm] $\bruch{1}{2}2^x+e^{-x}=0$ [/mm]
[mm] $2^{-1}2^x+e^{-x}=0$ [/mm]
[mm] $2^{x-1}+e^{-x}=0$ [/mm]
[mm] $\gdw\ e^{(x-1)*\ln 2}+e^{-x}=0$ [/mm]
[mm] $\gdw\ e^{x*\ln 2}=-e^{-x}$ [/mm]
[mm] $\gdw\ -1=e^{-x-(x-1)*\ln 2}$ [/mm]
[mm] $\Rightarrow\ \IL=\{\}$ [/mm]

Das die Gleichung keine Lösung haben würde, sieht man bereits an der ersten Gleichung: Dort steht ja die Summe zweier auf jeden Fall positiver Summanden, die deswegen nicht Null sein kann.

Ob man das an c) auch sehen kann?

Liebe Grüße,
Marc

Bezug
                
Bezug
Exponentialfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 So 23.05.2004
Autor: Christa

Ne, kann och nicht Null werden. Und wenn ich das dann mal so rechne komme ich auf:

[mm](\bruch{2}{3})^x=-\bruch{3}{2}[/mm]

Und das hat dann wieder keine Lösung. Stände da aber doch anstatt [mm]-\bruch{3}{2}[/mm] dann wäre die Nullstelle x=-1, oder?!

Liebe Grüße
Christa

Bezug
                        
Bezug
Exponentialfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 23.05.2004
Autor: Marc

Hallo Christa,

> Ne, kann och nicht Null werden. Und wenn ich das dann mal
> so rechne komme ich auf:
>  
> [mm](\bruch{2}{3})^x=-\bruch{3}{2}[/mm]

[ok]

> Und das hat dann wieder keine Lösung. Stände da aber doch
> anstatt [mm]-\bruch{3}{2}[/mm] dann wäre die Nullstelle x=-1,
> oder?!

du meinst "... anstatt [mm]-\bruch{3}{2}[/mm] [mm]\blue{\bruch{3}{2}}[/mm], dann..."?

[ok]

Liebe Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de