www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialfunktionen ableiten
Exponentialfunktionen ableiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen ableiten: Korrektur/Idee
Status: (Frage) beantwortet Status 
Datum: 21:30 Do 30.01.2014
Autor: rapunzelmeow

Aufgabe 1
Bestimmen sie die Ableitungsfunktion von f.

Aufgabe 2
Leite ab.

1a) f(x) = (1-x) * [mm] e^x [/mm]
      f'(x)= -x * [mm] e^x [/mm] * [mm] e^x [/mm] * (1-x)

b) f(x) = [mm] x^2 [/mm] * e^-x
    f'(x)= 2x * e^-x - e^-x * [mm] x^2 [/mm]

c) f(x) = (wurzel x) * [mm] e^x [/mm]
f'(x) = -0,5x^-1,5 + [mm] e^x [/mm]  * [mm] e^x [/mm] + (wurzel aus x)

d) f(x) = 1/e^2x
f(x) = e^-2x
f'(x)= -2e^-2x

e) f(x)= [mm] (x^3 [/mm] * [mm] 3x^2 [/mm] ) * e^-x
f'(x)= [mm] (3x^2+6x)*e^-x [/mm] - e^-x + e^-x

f) f(x) = [mm] x^2/ e^x [/mm]
   Hier hab ich keine Ahnung..

g) f(x) = (wurzel aus [mm] e^x [/mm] )
   Hier leider auch nicht..

h) f(x) = [mm] (x^2 [/mm] +1) *  e^-x
f'(x)= 2x + e^-x * -e^-x + [mm] x^2 [/mm] + 1

i) f(x) = [mm] (x^2 [/mm] - e^-2x ) ^2
   Muss ich hier die binomische Formel anwenden?


2a) f(x)= [mm] (x^2 [/mm] + 2) * e^4x
f'(x)= 2x * e^4x + 4e^4x * [mm] x^2 [/mm] + 2

b) f(x)= [mm] (e^x [/mm] - [mm] 1)^2 [/mm]
f'(x)= [mm] 2e^x [/mm] - [mm] 2e^x [/mm] -1

c) f(x)= [mm] (2e^x [/mm] + [mm] 4)^2 [/mm]
f(x)= [mm] 4e^x [/mm] + [mm] 16e^x [/mm] + 16
f'(x)= [mm] 4e^x [/mm] + [mm] 16e^x [/mm]


Das war eine Tipparbeit..puuh.
Hoffe, dass jemand helfen kann :) Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialfunktionen ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Do 30.01.2014
Autor: Gonozal_IX

Hiho,

>  1a) f(x) = (1-x) * [mm]e^x[/mm]
>        f'(x)= -x * [mm]e^x[/mm] * [mm]e^x[/mm] * (1-x)

[notok]
Da ist aus deinem + wohl ein * geworden....

>  
> b) f(x) = [mm]x^2[/mm] * e^-x
>      f'(x)= 2x * e^-x - e^-x * [mm]x^2[/mm]

[ok]

> c) f(x) = (wurzel x) * [mm]e^x[/mm]
>  f'(x) = -0,5x^-1,5 + [mm]e^x[/mm]  * [mm]e^x[/mm] + (wurzel aus x)

[notok]
  

> d) f(x) = 1/e^2x
> f(x) = e^-2x
>  f'(x)= -2e^-2x

[ok]

>  
> e) f(x)= [mm](x^3[/mm] * [mm]3x^2[/mm] ) * e^-x
>  f'(x)= [mm](3x^2+6x)*e^-x[/mm] - e^-x + e^-x

[notok]
Steht in der Klammer nun ein * oder ein +

> f) f(x) = [mm]x^2/ e^x[/mm]
> Hier hab ich keine Ahnung..

Schau dir mal deine d) an

> g) f(x) = (wurzel aus [mm]e^x[/mm] )
>     Hier leider auch nicht..

Wurzel umschreiben und Potenzgesetze anwenden


> h) f(x) = [mm](x^2[/mm] +1) *  e^-x
>  f'(x)= 2x + e^-x * -e^-x + [mm]x^2[/mm] + 1

Auch hier wieder ein Wust aus + und *

> i) f(x) = [mm](x^2[/mm] - e^-2x ) ^2
>     Muss ich hier die binomische Formel anwenden?

Kannst du, aber Kettenregel geht wohl schneller.

>
> 2a) f(x)= [mm](x^2[/mm] + 2) * e^4x
>  f'(x)= 2x * e^4x + 4e^4x * [mm]x^2[/mm] + 2

[notok]

> b) f(x)= [mm](e^x[/mm] - [mm]1)^2[/mm]
>  f'(x)= [mm]2e^x[/mm] - [mm]2e^x[/mm] -1

[notok]
Kettenregel!

> c) f(x)= [mm](2e^x[/mm] + [mm]4)^2[/mm]
>  f(x)= [mm]4e^x[/mm] + [mm]16e^x[/mm] + 16
>  f'(x)= [mm]4e^x[/mm] + [mm]16e^x[/mm]

[notok]
Binomische Formel nochmal üben, aber auch hier: Kettenregel!


> Das war eine Tipparbeit..puuh.

Aber für eine Begrüßung hat es nicht gereicht?

>  Hoffe, dass jemand helfen kann :) Danke.

Übersichtlicher wäre es, wenn du sauber den Formeleditor benutzt, dazu ein paar Hinweise:

1.) Setze Formeln/Gleichungen komplett in $ oder [mm][/mm]

2.) Wenn du mehr als eine Potenz schreiben willst, schreibe die Potenz in geschweifte Klammern. e^{-x}*e^{2x} liefert dir das gewünschte  [mm] e^{-x}*e^{2x} [/mm]

3.) [mm] \wurzel{x} [/mm] ist \wurzel{x}. Auch hier den gesamten Ausdruck in die geschweiften Klammern.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de