www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentialgleichung
Exponentialgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: Ich finde meinen Fehler nicht
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 06.12.2010
Autor: Metaller

Aufgabe
L=x | [mm] 4*5^{2x-3} [/mm] = [mm] 5*10^{x-1} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe diese Aufgabe komplett durchgerechnet aber irgendwo muss ich einen Fehler gemacht haben nur ich find ihn nicht raus. Ich habe diese Aufgabe schonmal gemacht und da hab ich das richtige ergebnis. Die Aufgabe die ich zum Schluss in den Taschenrechner eingebe stimmt auch mit dem richtigen überein, denn och bekomme ich ein anderes Ergebnis raus (und das mit 4 verschienden Taschenrechnern und 8 versuchen)



[mm] 4*5^{2x-3} [/mm] = [mm] 5*10^{x-1} [/mm]                   |:4
[mm] 5^{2x-3} [/mm] = [mm] 1,25*10^{x-1} [/mm]                  |log
[mm] log(5^{2x-3} [/mm] = [mm] log(1,25*10^{x-1}) [/mm]
(2x-3)*log(5) = log(1,25) + [mm] log(10^{x-1} [/mm]
2x*log(5)-3*log(5) = log(1,25)+(x-1)*log(10)
2x*log(5)-3*log(5) = log(1,25)+x*log(10)-log(10) |-x*log(10) |+3xlog(5)
2x*log(5)-x*log(10) = log(1,25)*log(10)+3*log(5)
x(2*log(5)*log(10)) = log(1,25)-log(10)+3*log(5)

x= [mm] \left \bruch {log(1,25)-log(10)+3*log(5)} {2*log(5)*log(10)} \right [/mm]

Würde mich freuen, wenn ihr mir antwortet und mir vielleicht meinen Fehler zeigt/erklärt.

PS.: Als richtig Lösung muss 3 rauskommen

        
Bezug
Exponentialgleichung: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:09 Mo 06.12.2010
Autor: Loddar

Hallo Metaller!


Ich finde Deine Rechnung etwas kompliziert. Aber dazu mehr.


> [mm]4*5^{2x-3}[/mm] = [mm]5*10^{x-1}[/mm]                   |:4
> [mm]5^{2x-3}[/mm] = [mm]1,25*10^{x-1}[/mm]                  |log

Welcher Logarithmus (zu welcher Basis) soll das sein?
Wenn Du den dekadischen Logarthmus nimmst, gilt doch [mm]\log_{10}(10) \ = \ \lg(10) \ = \ 1[/mm] .


> [mm]log(5^{2x-3}[/mm] = [mm]log(1,25*10^{x-1})[/mm]
> (2x-3)*log(5) = log(1,25) + [mm]log(10^{x-1}[/mm]
> 2x*log(5)-3*log(5) = log(1,25)+(x-1)*log(10)
> 2x*log(5)-3*log(5) = log(1,25)+x*log(10)-log(10)  |-x*log(10) |+3xlog(5)
> 2x*log(5)-x*log(10) = log(1,25)*log(10)+3*log(5)
> x(2*log(5)*log(10)) = log(1,25)-log(10)+3*log(5)

Es muss links [mm]2*\log(5) \ \red{-} \ \log(10)[/mm] lauten.

> x= [mm]\left \bruch {log(1,25)-log(10)+3*log(5)} {2*log(5)*log(10)} \right[/mm]

Siehe oben.



Hier nun mein Weg / Ansatz:

[mm]4*5^{2x-3} \ = \ 5*10^{x-1}[/mm]

[mm]4*5^{2x-3} \ = \ 5*10^x*10^{-1}[/mm]

[mm]4*5^{2x-3} \ = \ 5*(5*2)^x*10^{-1}[/mm]

[mm]4*5^{2x-3} \ = \ 5^1*5^x*2^x*10^{-1}[/mm]

[mm]4*5^{2x-3} \ = \ 5^{x+1}*2^x*10^{-1}[/mm]

[mm]\bruch{5^{2x-3}}{5^{x+1}*2^x} \ = \ \bruch{1}{4}*\bruch{1}{10}[/mm]

[mm]\bruch{5^{(2x-3)-(x+1)}}{2^x} \ = \ \bruch{1}{40}[/mm]

[mm]\bruch{5^{x-4}}{2^x} \ = \ \bruch{1}{40}[/mm]

[mm]\bruch{5^{x-4}*5^4}{2^x} \ = \ \bruch{5^4}{40}[/mm]

[mm]\bruch{5^x}{2^x} \ = \ \bruch{625}{40}[/mm]

[mm]\left(\bruch{5}{2}\right)^x \ = \ \bruch{125}{8}[/mm]

[mm]\left(\bruch{5}{2}\right)^x \ = \ \bruch{5^3}{2^3}[/mm]

[mm]\left(\bruch{5}{2}\right)^x \ = \ \left(\bruch{5}{2}\right)^3[/mm]

Okay, ist wahrscheinlich Geschmackssache mit dem Weg.


Gruß
Loddar

Bezug
                
Bezug
Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mo 06.12.2010
Autor: Metaller

Oh ja...das habe ich falsch abgetippt. Aber es muss noch einen anderen Fehler geben. Oder kann ich den Taschenrechner aufeinmal nicht mehr bedienen.

Bezug
                        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mo 06.12.2010
Autor: MathePower

Hallo Metaller,

> Oh ja...das habe ich falsch abgetippt. Aber es muss noch
> einen anderen Fehler geben. Oder kann ich den


Es gibt keinen anderen Fehler.

Das Ergebnis lautet somit

[mm]x=\bruch {log(1,25)-log(10)+3\cdot{}log(5)} {2\cdot{}log(5)-log(10)}[/mm]


> Taschenrechner aufeinmal nicht mehr bedienen.


Das kann ich Dir nicht sagen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de