www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Exponentialreihe
Exponentialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialreihe: Grenzwert
Status: (Frage) beantwortet Status 
Datum: 11:19 So 08.05.2016
Autor: anil_prim

Aufgabe
Zeigen Sie: für alle x [mm] \in \IR [/mm] gilt [mm] \limes_{n\rightarrow\infty}(1+\bruch{x}{n})^n=\summe_{k=0}^{\infty}\bruch{x^k}{k!} [/mm]

Hallo zusammen,

Wir benutzen zuerst den binomischen Lehrsatz:

[mm] \limes_{n\rightarrow\infty}(1+\bruch{x}{n})^n= \limes_{n\rightarrow\infty}\summe_{k=0}{n}\bruch{n!}{k!(n-k)!}*\bruch{x^k}{n^k} [/mm]

Wäre nun eine Induktion über x sinnvoll?

Viele Grüße,
Anil

        
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 08.05.2016
Autor: chrisno

Nein, denn x ist eine reelle Zahl.

Bezug
        
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:16 Mo 09.05.2016
Autor: fred97

Dass Induktion nach x nichts sinnvolles ist, hat man Dir schon gesagt.

Es ist schwer Dir zu helfen, denn ich bin nicht im Bilde, was Ihr verwenden dürft. Ein Vorschlag, der Differentialrechnung benutzt:



Setze für t>-1: f(x)=ln(1+t).

Für x=0 ist die Sache klar. Ist nun x [mm] \in \IR [/mm] und [mm] x\ne [/mm] 0, so wähle N [mm] \in \IN [/mm] so, dass

    [mm] \bruch{x}{n}>-1 [/mm]

ist für n>N.

Im Folgenden sei stets n>N.

Zeige:

  [mm] ln(1+\bruch{x}{n})^n=x*\bruch{f(\bruch{x}{n})-f(0)}{\bruch{x}{n}-0}. [/mm]

Somit: $ [mm] ln(1+\bruch{x}{n})^n \to [/mm] x*f'(0)=x$  für n [mm] \to \infty. [/mm]

Jetzt Du.

FRED

Bezug
                
Bezug
Exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:31 Mo 09.05.2016
Autor: anil_prim

Fred, das dürfen wir leider nicht benutzen..

Wäre denn folgendes sinnvoller:

nach Anwendung des binomischen Lehrsatzes gilt:

[mm] \limes_{n\rightarrow\infty}(\summe_{k=0}^{n}\bruch{n!}{k!(n-k!)}*\bruch{x^k}{k!}) [/mm] = [mm] \limes_{n\rightarrow\infty}\bruch{n*n*(n-1)*(n-2)*...*1}{k!*(n-1)*(n-2)*...*1}*\bruch{x^k}{n^k} [/mm] = [mm] \limes_{n\rightarrow\infty}\bruch{x^k}{k!}*\bruch{1}{n^ (k-1)} [/mm] = [mm] \summe_{k=0}^{infty}\bruch{x^k}{k!} [/mm]

Bezug
                        
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Mo 09.05.2016
Autor: fred97


> Fred, das dürfen wir leider nicht benutzen..
>  
> Wäre denn folgendes sinnvoller:
>  
> nach Anwendung des binomischen Lehrsatzes gilt:
>  
> [mm]\limes_{n\rightarrow\infty}(\summe_{k=0}^{n}\bruch{n!}{k!(n-k!)}*\bruch{x^k}{k!})[/mm]
> =
> [mm]\limes_{n\rightarrow\infty}\bruch{n*n*(n-1)*(n-2)*...*1}{k!*(n-1)*(n-2)*...*1}*\bruch{x^k}{n^k}[/mm]
> = [mm]\limes_{n\rightarrow\infty}\bruch{x^k}{k!}*\bruch{1}{n^ (k-1)}[/mm]
> = [mm]\summe_{k=0}^{infty}\bruch{x^k}{k!}[/mm]  


Nach dem  erste "=" fehlt [mm] \sum, [/mm] das zweite "=" ist völlig falsch und das dritte "=" ????

FRED

Bezug
                        
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Mo 09.05.2016
Autor: Jule2

Hi,
wie Fred ja schon sagte hast du nicht sauber gearbeitet, allerdings ist der gewählte Ansatz Zielführend wenn du es richtig aufschreibst.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de