www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Exponentialreihe
Exponentialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialreihe: Stimmt der Beweis ?
Status: (Frage) beantwortet Status 
Datum: 21:58 Do 25.11.2010
Autor: TrockenNass

Aufgabe
Man zeige, dass für [mm] z\in \IC [/mm] gilt:
[mm] \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n [/mm] = [mm] \summe_{k=0}^{\infty} \bruch{z^k}{k!} [/mm] .
(Tipp: Binomischer Lehrsatz)

[mm] \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n [/mm] = [mm] \summe_{k=0}^{\infty} \bruch{z^k}{k!} [/mm]

Beweis:
[mm] \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n [/mm] = [mm] \summe_{k=0}^{\infty} \bruch{z^k}{k!} [/mm]
[mm] \Rightarrow \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n [/mm] = exp(z) = [mm] \summe_{k=0}^{\infty} \bruch{z^k}{k!} [/mm]
[mm] (1+\bruch{z}{n})^n [/mm] = [mm] \summe_{k=0}^{n} \vektor{n \\ k} \bruch{z^k}{k!} [/mm]
[mm] =\summe_{k=0}^n \bruch{n(n-1)...(n-k+1)}{n^k}*\bruch{z^k}{k!} [/mm]
[mm] =\summe_{k=0}^n 1(1-\bruch{1}{n})...(1-\bruch{k-1}{n})*\bruch{z^k}{k!} \le [/mm] exp(z)

[mm] \Rightarrow [/mm] Folge [mm] ((1+\bruch{z}{n})^n)_n>1 (z\ge [/mm] 0) ist n.o.b. (nach oben beschränkt)
[mm] \Rightarrow [/mm] Folge ist monoton wachsend
[mm] \Rightarrow [/mm] Folge ist konvergent
[mm] \Rightarrow \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n \le [/mm] exp(z)

Es gilt:
[mm] (1+\bruch{z}{n})^n \ge \summe_{k=o}^m 1(1-\bruch{1}{n}...(1-\bruch{k-1}{n})*\bruch{z^k}{k!} [/mm] für [mm] m\le [/mm] n

Es sei nun m fest und n laufe
[mm] \Rightarrow [/mm] l.S. konvergiert
[mm] \Rightarrow [/mm] r.S. konvergiert [mm] \Rightarrow [/mm] konvergiert gegen [mm] \summe_{k=0}^m \bruch{z^k}{k!} [/mm]
Also gilt:
[mm] \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n \ge \summe_{k=0}^m \bruch {z^k}{k!} \forall m\in \IN [/mm]

Also auch:
[mm] exp(z)=\summe_{k=0}^{\infty} \bruch{z^k}{k!} \le \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n [/mm]


Anmerkung: Ich hab diesen Beweis in einem Skript gefunden, jedoch bin ich mir nicht sicher ob der Beweis so geht (klar - was im Skript steht, sollte eigentlich stimmen), da aber im Skript von x die Rede ist, und nicht von z bin ich mir nicht sicher.

        
Bezug
Exponentialreihe: Noch wer da?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:51 Fr 26.11.2010
Autor: TrockenNass

?

Bezug
        
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Fr 26.11.2010
Autor: angela.h.b.

Hallo,

einen Tippfehler habe ich gesehen und markiert, abgesehen davon könnte der Beweis (grob drübergeschaut) ganz schön sein - wenn es nicht um komplexe Zahlen ginge:  [mm] \le [/mm] ist im Zusammenhang mit komplexen Zahlen recht unbrauchbar. Ich fürchte, ganz so, wie Du es Dir gedacht hast, geht es nicht...

Gruß v. Angela

> Man zeige, dass für [mm]z\in \IC[/mm] gilt:  
> [mm]\limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n[/mm] =
> [mm]\summe_{k=0}^{\infty} \bruch{z^k}{k!}[/mm] . (Tipp: Binomischer
> Lehrsatz)
>  [mm]\limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n[/mm] =
> [mm]\summe_{k=0}^{\infty} \bruch{z^k}{k!}[/mm]
>  
> Beweis:
> [mm]\limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n[/mm] =
> [mm]\summe_{k=0}^{\infty} \bruch{z^k}{k!}[/mm]
>  [mm]\Rightarrow \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n[/mm]
> = exp(z) = [mm]\summe_{k=0}^{\infty} \bruch{z^k}{k!}[/mm]
>  
> [mm](1+\bruch{z}{n})^n[/mm] = [mm]\summe_{k=0}^{n} \vektor{n \\ k} \bruch{z^k}{\red{k!}}[/mm]
>  
> [mm]=\summe_{k=0}^n \bruch{n(n-1)...(n-k+1)}{n^k}*\bruch{z^k}{k!}[/mm]
>  
> [mm]=\summe_{k=0}^n 1(1-\bruch{1}{n})...(1-\bruch{k-1}{n})*\bruch{z^k}{k!} \le[/mm]
> exp(z)
>  
> [mm]\Rightarrow[/mm] Folge [mm]((1+\bruch{z}{n})^n)_n>1 (z\ge[/mm] 0) ist
> n.o.b. (nach oben beschränkt)
>  [mm]\Rightarrow[/mm] Folge ist monoton wachsend
>  [mm]\Rightarrow[/mm] Folge ist konvergent
>  [mm]\Rightarrow \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n \le[/mm]
> exp(z)
>  
> Es gilt:
> [mm](1+\bruch{z}{n})^n \ge \summe_{k=o}^m 1(1-\bruch{1}{n}...(1-\bruch{k-1}{n})*\bruch{z^k}{k!}[/mm]
> für [mm]m\le[/mm] n
>  
> Es sei nun m fest und n laufe
>  [mm]\Rightarrow[/mm] l.S. konvergiert
>  [mm]\Rightarrow[/mm] r.S. konvergiert [mm]\Rightarrow[/mm] konvergiert gegen
> [mm]\summe_{k=0}^m \bruch{z^k}{k!}[/mm]
>  Also gilt:
> [mm]\limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n \ge \summe_{k=0}^m \bruch {z^k}{k!} \forall m\in \IN[/mm]
>  
> Also auch:
> [mm]exp(z)=\summe_{k=0}^{\infty} \bruch{z^k}{k!} \le \limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n[/mm]
>  
> Anmerkung: Ich hab diesen Beweis in einem Skript gefunden,
> jedoch bin ich mir nicht sicher ob der Beweis so geht (klar
> - was im Skript steht, sollte eigentlich stimmen), da aber
> im Skript von x die Rede ist, und nicht von z bin ich mir
> nicht sicher.


Bezug
        
Bezug
Exponentialreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:48 Sa 27.11.2010
Autor: felixf

Moin!

> Man zeige, dass für [mm]z\in \IC[/mm] gilt:  
> [mm]\limes_{n\rightarrow\infty} (1+\bruch{z}{n})^n[/mm] = [mm]\summe_{k=0}^{\infty} \bruch{z^k}{k!}[/mm] . (Tipp: Binomischer Lehrsatz)

Man kann per Induktion (nach $k [mm] \le [/mm] n$) zeigen, dass $0 [mm] \le [/mm] 1 - [mm] \prod_{i=n-k+1}^n \frac{i}{n} \le \frac{1}{n} \sum_{i=1}^{k-1} [/mm] i = [mm] \frac{k (k - 1)}{2 n}$ [/mm] gilt.

Damit folgt (mit Hilfe des Binomischen Lehrsatzes) [mm] $\left| (1+\bruch{z}{n})^n - \summe_{k=0}^{\infty} \bruch{z^k}{k!} \right| \le \sum_{k=2}^n \frac{|z|^k}{2 n (k - 2)!} [/mm] + [mm] \sum_{k=n+1}^\infty \frac{|z|^k}{k!}$. [/mm]

Der hintere Teil geht fuer $n [mm] \to \infty$ [/mm] gegen 0 (da die Exponentialreihe konvergiert).

Es reicht also aus, [mm] $\sum_{k=2}^n \frac{|z|^k}{2 n (k - 2)!} \to [/mm] 0$ zu zeigen fuer $n [mm] \to \infty$. [/mm]

(Jetzt braucht man nur noch etwas ueber die Konvergenz reeller Reihen zu wissen.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de