www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Exponentialverteilung
Exponentialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Ansatz-Hilfe
Status: (Frage) beantwortet Status 
Datum: 15:30 Mi 01.12.2004
Autor: Phlipper

Verstehe die Aufgabenstellung nicht ! Es wäre nett,wenn mir einer einen
kleinen Tipp geben könnte. Danke

Die zufällige Größe Z sei exponentialverteilt mit Parameter e > 0. Wir betrachten
X := [Z] und Y := Z - [Z], wobei [] die entier-Funktion (ganzer Teil) bezeichnet.
(a) Bestimmen Sie die gemeinsame Verteilung von (X; Y ) sowie die Randverteilungen von X und Y .
Hinweis: Berechnen Sie P(X = n; Y <= y). Überlegen Sie sich vorher, welche
Werte X und Y annehmen können.
(b) Sind X und Y unabhängig?

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Do 02.12.2004
Autor: Julius

Hallo Phlipper!

Es gilt für alle $n [mm] \in \IN_0$ [/mm] und $y [mm] \in [/mm] [0,1)$:

$P(X=n,Y [mm] \le [/mm] y) = P(n [mm] \le [/mm] Z [mm] \le [/mm] n+y)$.

Versuche dir das erst einmal klar zu machen. Anschließend kannst du dann ja einfach mit der (Exponential-)Verteilung von $Z$ weiterrechnen.

Tipp: Wann ist denn $X=n$?

Wenn $Z$ irgendeinen Wert in $[n,n+1)$ annimmt.

Wir haben also: $Z=n,...$. Der Teil hinter dem Komma ist aber gerade das $Y$, nämlich $Z-[Z]$.

Viele Grüße
Julius

Bezug
                
Bezug
Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:13 Fr 03.12.2004
Autor: Phlipper

Danke für den Tipp,habe das soweit hinbekommen. X und Y sind auch unabhängig,
aber ich weiß nicht wie ich es mathematisch korrekt aufschreibe, meine die Verteilung. Also,dass X den Wert n annimmt ist das Integral von n bis n+1 für die Exponentialfunktion oder ? Und für das Y ? Verstehe die Aufgabe, aber ich kann es nicht aufschreibe. Wäre nett,wenn sich noch einmal jemand opfern würde,ein paar Zeilen zu schreiben !
Danke

Bezug
                        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Fr 03.12.2004
Autor: Julius

Hallo Phlipper!

Ich nenne der Parameter der Exponentialverteilung jetzt mal [mm] $\lambda$. [/mm]

Also, wie gesagt, rechnet man mit der Exponentialverteilung aus:

$P(X=n,Y [mm] \le [/mm] y) = [mm] e^{-\lambda n} [/mm] - [mm] e^{-\lambda (n+y)}$. [/mm]

Weiter erhält man für die Randverteilungen:

$P(X=n) = P(X=n, [mm] Y\le [/mm] 1) = [mm] e^{-\lambda n} [/mm] - [mm] e^{-\lambda (n+1)}$ [/mm]

und

[mm] $F_Y(y) [/mm] = P(Y [mm] \le [/mm] y) = [mm] \sum\limits_{n=0}^{\infty} [/mm] P(X=n,Y [mm] \le [/mm] y) = (1 - [mm] e^{-\lambda y}) \sum\limits_{n=0}^{\infty} e^{-\lambda n} [/mm] = [mm] \frac{1 - e^{-\lambda y}}{1 - e^{-\lambda}}$. [/mm]

Die Dichte erhältst du durch Ableiten.

Viele Grüße
Julius

Bezug
                                
Bezug
Exponentialverteilung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Fr 03.12.2004
Autor: Phlipper

Ah jetzt habe ich es,die Dichten habe ich auch ermittelt. Nochmal danke, Julius !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de