www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Exponentielle Glättung
Exponentielle Glättung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielle Glättung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Di 30.06.2009
Autor: U-Gen

Aufgabe
Gegeben sei die Zeitreihe der folgenden Tabelle.

Periode = 1, 2
Messwerte = 5590, 4285

Führen Sie eine exponentielle Glättung für ein konstantes Niveau mit einem
Glättungsparameter von 0,2 durch. Prognostizieren Sie einen Wert für die dritte Periode.

Hey,

ich hab da so meine Probleme mit der exponentiellen Glättung 2.Ordnung. Ich versteh meine vorgegebene Formel nicht bzw. weiß ich gar nicht ob ich die richtige Formel verwende. Könnte mir da jemand helfen ? Ich bin an dieser Aufgabe steckengeblieben und komm einfach nicht weiter. Einen Ansatz wäre ziemlich hilfreich.

        
Bezug
Exponentielle Glättung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Di 30.06.2009
Autor: Sigma

Hallo,

da schau ich doch gleich mal in meine Kristallkugel und versuche deine vorgegebe Formel zu erkennen. Ist es diese?

[mm] $y_t^\*=\alpha*y_t+(1-\alpha)*y_{t-1}^\*$ [/mm]

Jetzt einsetzen: [mm] \alpha=0.2, y_{1}^\*=5590 [/mm]

[mm] $y_2^\*=0.2*4285+(1-0.2)*5590=5329$ [/mm]

Der Schätzwert [mm] y_t^\* [/mm] liefert dann den Prognosewert für den Zeitpunkt t+1. Somit würde ich den Wert der dritten Periode auf 5329 schätzen.

gruß sigma

Upps: Hab glatt überlesen, das es um exponentielle Glättung 2. Ordnung geht. Stell doch mal deine Formeln rein. Dann kann man dir auch besser helfen.

Bezug
                
Bezug
Exponentielle Glättung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:53 Mi 01.07.2009
Autor: U-Gen

Meine Formel lautet:

[mm] x_{t}^{2.Ordnung} [/mm] = [mm] \alpha [/mm] * [mm] x_{t}^{1.Ordnung} [/mm] + (1 - [mm] \alpha) [/mm] * [mm] x_{t-1}^{2.Ordnung} [/mm]

Mit meinen gegebenen Daten kann ich ja nur eine Prognose erstellen, die die du auch oben schon genannt hast. Aber für die Formel brauche ich ja ein [mm] x_{t-1}^{2.Ordnung}. [/mm] Wo krieg ich die denn her ?!

Bezug
                        
Bezug
Exponentielle Glättung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 01.07.2009
Autor: Sigma


> Meine Formel lautet:
>  
> [mm]x_{t}^{2.Ordnung}[/mm] = [mm]\alpha[/mm] * [mm]x_{t}^{1.Ordnung}[/mm] + (1 -
> [mm]\alpha)[/mm] * [mm]x_{t-1}^{2.Ordnung}[/mm]
>  
> Mit meinen gegebenen Daten kann ich ja nur eine Prognose
> erstellen, die die du auch oben schon genannt hast. Aber
> für die Formel brauche ich ja ein [mm]x_{t-1}^{2.Ordnung}.[/mm] Wo
> krieg ich die denn her ?!

Deine Formel sieht ja eigentlich wie die 1. Ordnung aus. Soviel ich weiß ist ja die Exponentielle Glättung 2. Ordnung einfach 2 mal die exponentielle Ordnung 1. ordnung hintereinander ausgeführt. Und wie bei der 1. Ordnung brauchen wir wieder einen gewählten Startwert.

Einsetzen: [mm] \alpha=0.2 [/mm] , [mm] x_{1}^{2.Ordnung}=5590 [/mm]

[mm]x_{2}^{2.Ordnung}[/mm] = [mm]\alpha[/mm] * [mm]x_{2}^{1.Ordnung}[/mm] + [mm](1-\alpha)[/mm] * [mm]x_{1}^{2.Ordnung}[/mm]

[mm]x_{2}^{2.Ordnung}[/mm] = [mm]0.2[/mm] * [mm]5329[/mm] + [mm](1-0.2)[/mm] * [mm]5590[/mm]=5537.8

Zitat Anfang:
Die exponentielle Glättung ist dann ein empfehlenswertes Verfahren, wenn die Zeitreihenwerte einen chaotischen Eindruck machen und keinerlei Systematik erkennen lassen. Liegen allerdings Beobachtungen vor, die einen Trend beinhalten, d.h. die laufend steigen oder fallen, "schleppen" die geglätteten Werte "hinterher", wie ... Man kann diesem Problem mit der so genannten "doppelten exponentiellen Glättung" abhelfen.
Zitat Ende:
Quelle: www.wikipedia.de

Wie man sieht, war meine erste Antwort doch nicht umsonst, da ich diese für die exponentielle Glättung 2. Ordnung brauchte. Interpretierbar ist das Ergebnis bei sowenig Datenpunkten wohl kaum. Meist muss man sich bei einer Prognose auch nicht nur auf Formeln sondern auch auf den gesunden Menschenverstand verlassen.

gruß sigma10

PS. Wäre nett, wenn du dich mal nach Auswertung meldest, ob meine Überlegungen richtig waren.

Bezug
                                
Bezug
Exponentielle Glättung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:08 Do 02.07.2009
Autor: U-Gen

Das was du jetzt gemacht hast ist ja eine Prognose für t=2, ich brauch jedoch eine Prognose für t=3.

Ich warte einfach mal ab, am Montag ist die Besprechung dann geb ich dir die richtige Antwort durch.

Bezug
                                        
Bezug
Exponentielle Glättung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Do 02.07.2009
Autor: Sigma


> Das was du jetzt gemacht hast ist ja eine Prognose für
> t=2, ich brauch jedoch eine Prognose für t=3.

Das glaube ich nicht. Wie bei der Exponentiellen Glättung 1. Ordnung, wo

$ [mm] y_2^\*=0.2\cdot{}4285+(1-0.2)\cdot{}5590=5329 [/mm] $

einen Prognosewert für den Zeitpunkt t+1=2+1=3 liefert.

Ist $ [mm] x_{2}^{2.Ordnung} [/mm] $=5537.8 ein Prognosewert für die 3. Periode

Für $ [mm] x_{3}^{2.Ordnung} [/mm] $ brauchst du nach deiner Formel ja $ [mm] x_{3}^{1.Ordnung} [/mm] $ Dafür wiederum braucht man laut Wikipedia Formel [mm] x_{3}. [/mm] Sprich ich brauche 3 datenpunkte dafür und hätte dann dein $ [mm] x_{3}^{2.Ordnung} [/mm] $. Aber was macht es für einen Sinn ein $ [mm] x_{3}^{2.Ordnung} [/mm] $ als Prognose für die 3. Periode anzusehen, wenn du dafür diese benötigst?

gruß sigma

Bezug
                                                
Bezug
Exponentielle Glättung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Sa 18.07.2009
Autor: U-Gen

Hab jetzt die richtige Lösung:

[mm] \overline{x} [/mm] = [mm] \bruch{1}{2} [/mm] * (5590 + 4285)  = 4937,5


[mm] y_{1,2} [/mm] = 0,2 * 5590 + (1 - 0,2) * 4937,5 = 5068

[mm] y_{2,3} [/mm] = 0,2 * 4285 + (1 - 0,2) * 5068 = 4911,4

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de