www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentielle Terme
Exponentielle Terme < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielle Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 08.02.2012
Autor: no-knowledge

[mm] f(x)=(6+12x-2x^{2})*e^{-0,5x} [/mm]
Nullstelle berechnen:
[mm] 6+12x-2x^{2}=0 [/mm]  |:-2
[mm] -3-6x+x^{2}=0 [/mm]
[mm] x_{1/2}=3\pm \wurzel{12} [/mm]
[mm] x_{1}=3+ \wurzel{12}= [/mm] 6,46
[mm] x_{2}=3- \wurzel{12}= [/mm] -0,46
Ist das Richtig?
Ist die zweite Ableitung richtig?
[mm] f'(x)=(3+6x-0,5x^{2})*e^{-0,5x} [/mm]




        
Bezug
Exponentielle Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mi 08.02.2012
Autor: notinX

Hallo,

> [mm]f(x)=(6+12x-2x^{2})*e^{-0,5x}[/mm]
>  Nullstelle berechnen:
>  [mm]6+12x-2x^{2}=0[/mm]  |:-2
>  [mm]-3-6x+x^{2}=0[/mm]
>  [mm]x_{1/2}=3\pm \wurzel{12}[/mm]
>  [mm]x_{1}=3+ \wurzel{12}=[/mm] 6,46
>  [mm]x_{2}=3- \wurzel{12}=[/mm] -0,46
>  Ist das Richtig?

ja.

>  Ist die zweite Ableitung richtig?
>  [mm]f'(x)=(3+6x-0,5x^{2})*e^{-0,5x}[/mm]

Nein, außerdem kennzeichnet man die zweite Ableitung mit $f''(x)$.

>  
>
>  

Gruß,

notinX

Bezug
                
Bezug
Exponentielle Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mi 08.02.2012
Autor: no-knowledge

Tut mir Leid ich meinte damit die erste, ich habe die ganze Zeit versucht doch das mit der Ableitung klappt igrendwie nicht

Bezug
                        
Bezug
Exponentielle Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mi 08.02.2012
Autor: notinX


> Tut mir Leid ich meinte damit die erste, ich habe die ganze
> Zeit versucht doch das mit der Ableitung klappt igrendwie
> nicht

Dann zeig mal, wie Du auf Deine Lösung gekommen bist.

Bezug
                                
Bezug
Exponentielle Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Mi 08.02.2012
Autor: no-knowledge

also meine Strategie ist einfach nur das ich immer mal 0,5 genommen habe, jetzt versuche ich es mit den Produktionsregeln jedoch bin ich mir  nicht sicher wie es noch mal bei diesem Verfahren ging.

Bezug
                                        
Bezug
Exponentielle Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mi 08.02.2012
Autor: notinX


> also meine Strategie ist einfach nur das ich immer mal 0,5

Einfach irgendwelche 'Strategien' erfinden hilft beim Ableiten nicht. Dafür gibt es genaue Regeln.

> genommen habe, jetzt versuche ich es mit den
> Produktionsregeln jedoch bin ich mir  nicht sicher wie es
> noch mal bei diesem Verfahren ging.  

Mit 'Produktion' haben diese Regeln nichts zu tun. Was Du meinst ist die Produktregeln. Wenn Du nicht mehr, weißt wie diese lautet, solltest Du nachschaun.

Bezug
                                                
Bezug
Exponentielle Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 08.02.2012
Autor: no-knowledge

[mm] f'(x)=12+(7+8x-2x^{2})*e^{-0,5} [/mm] ?? Ist das Richtig, wenn nein wo könnte mein fehler liegen?

Bezug
                                                        
Bezug
Exponentielle Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 08.02.2012
Autor: notinX


> [mm]f'(x)=12+(7+8x-2x^{2})*e^{-0,5}[/mm] ?? Ist das Richtig, wenn

Nein.

> nein wo könnte mein fehler liegen?

Das kann ich Dir nicht sagen, wenn Du Deinen Rechenweg nicht zeigst.

Bezug
                                                                
Bezug
Exponentielle Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Mi 08.02.2012
Autor: no-knowledge

Produktregel:
[mm] u(x)=6+12x-2x^{2} [/mm]
u'(x)=12-4x
[mm] v(x)=e^{-0,5x} [/mm]
[mm] v'(x)=e^{-0,5x} [/mm]
[mm] f'(x)=12-4x*e^{-0.5}+6+12x-2x^{2}*e^{-0,5x} [/mm]



Bezug
                                                                        
Bezug
Exponentielle Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Mi 08.02.2012
Autor: notinX


> Produktregel:
>  [mm]u(x)=6+12x-2x^{2}[/mm]
>  u'(x)=12-4x

[ok]

>  [mm]v(x)=e^{-0,5x}[/mm]
>  [mm]v'(x)=e^{-0,5x}[/mm]

Du musst hier die Kettenregel anwenden. Äuere Funktion ist [mm] $e^x$, [/mm] innere ist [mm] $-\frac{x}{2}$ [/mm]

>  [mm]f'(x)=12-4x*e^{-0.5}+6+12x-2x^{2}*e^{-0,5x}[/mm]
>  
>  


Bezug
                                                                                
Bezug
Exponentielle Terme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 08.02.2012
Autor: no-knowledge

Ich glaube jetzt habe ich es
[mm] f'(x)=(-10x+9+x^{2})*e^{-0,5}[/mm]

Bezug
                                                                                        
Bezug
Exponentielle Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 03:34 Do 09.02.2012
Autor: MathePower

Hallo no-knowledge,

> Ich glaube jetzt habe ich es
> [mm]f'(x)=(-10x+9+x^{2})*e^{-0,5}[/mm]  


Hier hast Du das "x" im >Exponenten vergessen:

[mm]f'(x)=(-10x+9+x^{2})*e^{-0,5\blue{x}}[/mm] [ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de