www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Exponentielle(s) Wachstum
Exponentielle(s) Wachstum < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielle(s) Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 12.05.2012
Autor: Unwissende33

Aufgabe
Der radioaktive Zerfall eines Elements lässt sich durch exponentielles Wachstum beschreiben.

Für Radium beträgt die Halbwertszeit 1620 Jahre.

a.) Stelle eine Funktionsgleichung der exponentiellen Funktion auf.
b.) Wieviel war von dem ersten Gramm Radium, das Marie Curie 1898 herstellte, nach 100 Jahren noch übrig?

Ich bin so weit gekommen:

0,5 = c*a^1620

Ist c in dem Fall 1?

Und bei b.) hatte ich gar keine Idee. Ich kann dann ja nicht nochmal 1620 einsetzen, weil ja nur 100 Jahre vergehen.

        
Bezug
Exponentielle(s) Wachstum: Funktion
Status: (Antwort) fertig Status 
Datum: 17:46 Sa 12.05.2012
Autor: Infinit

Hallo Unwissende,
hier ist mal eine Exponentialfunktion als Funktion der Zeit. Hiermit solltest Du weiterkommen.
[mm] y(t) = c e^{-\lambda t} [/mm]
Viele Grüße,
Infinit


Bezug
                
Bezug
Exponentielle(s) Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Sa 12.05.2012
Autor: Unwissende33

Sehe ich das richtig:

y(100) = 1*x^-100*1620

Sieht für mich nicht wirklich richtig aus.

t ist 100 (wegen den 100 Jahren), den Anfangswert (also x) kenne ich nicht, aber was ist [mm] \lambda? [/mm] Doch wohl nicht 1620?

Bezug
                        
Bezug
Exponentielle(s) Wachstum: Halbwertszeit
Status: (Antwort) fertig Status 
Datum: 18:18 Sa 12.05.2012
Autor: Infinit

Hallo,
die Halbwertszeit heißt so, da nach Verstreichen dieser Zeit gerade nur noch halb soviele Atome vorhanden sind wie zu Beginn. Zu diesem Zeitpunkt [mm] t_H [/mm], bei Dir 1620 Jahre,  gilt:
[mm] \bruch{c}{2} = c \cdot e^{- \lambda t_H} [/mm]
Mit Logarithmieren bekommst Du
[mm] t_H = \bruch{\ln 2}{\lambda} [/mm]
und hieraus für die Größe [mm] \lambda [/mm]
[mm] \lambda = \bruch{\ln 2}{1620} [/mm]
In der Form von oben gibt dies also
[mm] y(t) = c e^{- \ln 2 \bruch{t}{t_H} [/mm]
Viele Grüße,
Infinit


Bezug
                                
Bezug
Exponentielle(s) Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Sa 12.05.2012
Autor: Unwissende33

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de