www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exponentielles Wachstum
Exponentielles Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielles Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:47 Mo 26.12.2011
Autor: Mathics

Aufgabe
Der Graph der Funktion f mit [mm] f(x)=e^x [/mm] +1, seine Tangente im Schnittpunkt mit der y-Achse, die x-Achse und die Gerade mit x=-4 begrenzen die Fläche. Berechnen Sie den Flächeninhalt.

Grafik: http://imageshack.us/f/707/20111226092902923.jpg/


Hallo,

ich weiß wie ich diese Aufgabe lösen muss. Und zwar muss ich erst den Flächeninhalt der Fläche zwischen Graph, x=-4, x-Achse und y-Achse berechnen. Hierbei rechne ich mit dem Integral von 0 bis -4. Anschließend rechne ich separat den Flächeninhalt des weißen Dreiecks aus und zieh diesen von der "Gesamtfläche" ab.

Meine Frage konzentriert sich auf das Integral. Muss ich da mit f(x) rechnen oder mit der Stammfunktion F(x).

Sprich: [mm] \integral_{-4}^{0}{e^x +1 dx} [/mm] oder [mm] \integral_{-4}^{0}{e^x dx} [/mm]


Danke!

Frohe Weihnachten! :)



        
Bezug
Exponentielles Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Mo 26.12.2011
Autor: abakus


> Der Graph der Funktion f mit [mm]f(x)=e^x[/mm] +1, seine Tangente im
> Schnittpunkt mit der y-Achse, die x-Achse und die Gerade
> mit x=-4 begrenzen die Fläche. Berechnen Sie den
> Flächeninhalt.
>  
> Grafik: http://imageshack.us/f/707/20111226092902923.jpg/
>  
> Hallo,
>  
> ich weiß wie ich diese Aufgabe lösen muss. Und zwar muss
> ich erst den Flächeninhalt der Fläche zwischen Graph,
> x=-4, x-Achse und y-Achse berechnen. Hierbei rechne ich mit
> dem Integral von 0 bis -4. Anschließend rechne ich separat
> den Flächeninhalt des weißen Dreiecks aus und zieh diesen
> von der "Gesamtfläche" ab.
>  
> Meine Frage konzentriert sich auf das Integral. Muss ich da
> mit f(x) rechnen oder mit der Stammfunktion F(x).
>  
> Sprich: [mm]\integral_{-4}^{0}{e^x +1 dx}[/mm] oder
> [mm]\integral_{-4}^{0}{e^x dx}[/mm]

Hallo,
du musst [mm]\integral_{-4}^{0}{\red{(}e^x +1\red{)} dx}}[/mm]  berechnen.
Dafür musst du natürlich dann die Stammfunktionswerte F(0) und F(-4) bilden und subtrahieren.
Vorsicht: Die Stammfunktion von [mm]e^x+1[/mm] ist NICHT [mm]e^x[/mm].
Gruß Abakus

>  
>
> Danke!
>  
> Frohe Weihnachten! :)
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de