www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Extrem-/Wendepunkte
Extrem-/Wendepunkte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrem-/Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 09.11.2008
Autor: Mandy_90

Aufgabe
Untersuche
a) [mm] f(x)=x*e^{-0.5x^{2}} [/mm] auf Extrempunkte  
b) [mm] g(x)=(e^{x}-e^{-x})^{2} [/mm] auf Wendepunkte  

Hallo zusammen^^

Kann mir jemand nachgucken ob ich die Aufgabe richtig gerechnet habe?

a) [mm] f'(x)=e^{-0.5x^{2}}*(1-x)=0 [/mm]

x=1 >0

[mm] f''(x)=e^{-0.5x^{2}}*(-2+x) [/mm]

[mm] f''(1)=-0-6\not=0 [/mm] ----> Minimum bei (1/0.6)

b) [mm] f'(x)=2e^{2x}-2e^{-2x} [/mm]

[mm] f''(x)=4e^{2x}+4e^{-2x}=0 [/mm]

[mm] e^{2x}=e^{-2x} [/mm]

Für x müsste 0 rauskommen,aber ich weiß nicht wie ich das nach x auflösen soll??

lg

        
Bezug
Extrem-/Wendepunkte: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 17:14 So 09.11.2008
Autor: Loddar

Hallo Mandy!



> b) [mm]f'(x)=2e^{2x}-2e^{-2x}[/mm]
>  
> [mm]f''(x)=4e^{2x}+4e^{-2x}=0[/mm]

[ok]

  

> [mm]e^{2x}=e^{-2x}[/mm]

[notok] Hier fehlt ein Minuszeichen: [mm] $e^{2x} [/mm] \ = \ [mm] -e^{-2x}$ [/mm]

Multipliziere die Gleichung nun mit [mm] $e^{2x}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
Extrem-/Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 09.11.2008
Autor: M.Rex

Hallo

In a) passt die Ableitung nicht ganz.

[mm] f(x)=x*e^{-0,5x²} [/mm]

[mm] f'(x)=1*e^{-0,5x²}+x*(-x*e^{-0,5x²}) [/mm]
[mm] =(1-x^{\red{2}})*e^{-0,5x²} [/mm]

Und damit:  
[mm] 1-x_{e}²=0 [/mm]
[mm] \gdw x_{e}=\pm1 [/mm]

Die Probe mit der 2ten Ableitung mache mal selber.

Ausserdem passt die y-Koordinate nicht :

[mm] f(1)=1*e^{-0,5*(1)²} [/mm]
[mm] =e^{-0,5} [/mm]

Dementsprechend [mm] f(-1)=-e^{-0,5} [/mm]

Marius

Bezug
                
Bezug
Extrem-/Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 So 09.11.2008
Autor: Mandy_90

ok,ich hab die zweite Ableitung berechnet:

[mm] f''(x)=x*e^{-0.5x^{2}}*(-3+x^{2}) [/mm]

[mm] f''(1)=-1.21\not=0 [/mm]

[mm] f''(-1)=3.297\not=0 [/mm]

Damit hab ich also 2 Wendepunkte [mm] W_{1}=(1/e^{-0.5}) W_{2}=(1/-e^{-0.5}). [/mm]

Ist das jetzt ok so?

lg

Bezug
                        
Bezug
Extrem-/Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 09.11.2008
Autor: M.Rex

Hallo

> ok,ich hab die zweite Ableitung berechnet:
>  

[mm] f''(x)=x*e^{-0.5x^{2}}*(-3+x^{2}) [/mm]

Die passt aber auch nicht ganz:

Aus [mm] f'(x)=(1-x²)*e^{-0,5x²} [/mm]
folgt (Wieder mit der Kombi aus Produkt- und Kettenregel)
[mm] f''(x)=2x*e^{-0,5x²}+(1-x²)*(-x)*e^{-0,5x²} [/mm]
[mm] =(2x-(x(1-x²))e^{-0,5x²} [/mm]
[mm] =(x+x³)e^{-0,5x²} [/mm]

  
[mm] f''(1)=...\red{<}\green{>}0 [/mm] also HochTiefpunkt bei H(1/f(1))
[mm] f''(-1)=...\red{<}\green{>}0 [/mm] also HochTiefpunkt bei H(-1/f(-1))

>  
> Damit hab ich also 2 Wendepunkte [mm]W_{1}=(1/e^{-0.5}) W_{2}=(1/-e^{-0.5}).[/mm]
>  
> Ist das jetzt ok so?

Für Wendepunkte [mm] W(x_{w}/F(x_{w}) [/mm] gilt.

[mm] f''(x_{w})=0 [/mm] und [mm] f'''(x_{w})\ne0. [/mm]


Mach dir bitte noch einmal die Bedingungen für Extrem- und Wendestellen klar, und beachte die Kombination aus Produkt- und Kettenregel, das ist bei der Funktionsuntersuchung von e-Funktionen ein gängiges Verfahren.

>  
> lg

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de