www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Extrema Sinus
Extrema Sinus < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema Sinus: Extremstellen einer sin-Fkt.
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 16.11.2012
Autor: WSparrow

Aufgabe
Bestimmen Sie die Extremstellen folgender Funktion.
f(x)=-sin(x)-x²

Hallo Community,

seit mehreren Tagen rätsle ich an dieser Aufgabe und ich hoffe, man kann mir hier helfen. Wie ich die Extrema errechne, kann ich mittlerweile im Schlaf. Habe ich in der Oberstufe dutzende Male gemacht. Daher hab ich bereits die Ableitung bestimmt, komme aber danach einfach nicht weiter.

f'(x)=-cos(x)-2x

Diese muss ja nun 0 gesetzt werden und nach x aufgelöst werden.
also:

-cos(x)-2x=0

Ausklammern ist in diesem Fall ja nicht möglich, also habe ich mir überlegt mit der Umkehrfunktion arccos(x) zu arbeiten:

-cos(x)-2x=0 | arccos
-x-arccos(2x)= arccos(0) |+arccos(2x)
-x=arccos(0)+arccos(2x) | /-1
x=-arccos(0)-arccos(2x)

Leider komme ich nun nicht mehr weiter. Laut Internetprogramm lautet das Ergebnis x= - 0,4501836.

Da ich nicht mehr weiterkam hab ich einfach mal anders aufgelöst:

-cos(x)-2x= | +cos(x)
-2x=cos(x) | /-2
[mm] x=\bruch{-cos(x)}{2} [/mm]

An dieser Stelle geht es aber auch nicht weiter.
Leider gingen mir nun die Ideen aus, weshalb ich euch um Hilfe bitten möchte ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Extrema Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Fr 16.11.2012
Autor: reverend

Hallo WSparrow,

diese Aufgabe ist nicht analytisch zu lösen. Du kannst Dein x also nur numerisch bestimmen.

Kann es sein, dass aber nur zu zeigen ist, dass die Funktion im Intervall [-2;2] ein Maximum hat?

Diese Aufgabe hatten wir hier nämlich vor ein paar Tagen.

Grüße
reverend


Bezug
                
Bezug
Extrema Sinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Fr 16.11.2012
Autor: WSparrow

Ja, das war ich vor ein paar Tagen, aber unsere Dozentin hat dasselbe Aufgabenblatt nochmal herausgegeben in überarbeiteter Version, weil sie meinte, es sei zu schwer und hat dann den Wortlaut der Aufgabe verändert, was ich echt seltsam fand :/
deshalb hab ich sie hier nochmal gestellt, ich dachte, das würde einen Unterschied machen.
Bedeutet numerisch lösen nun ausprobieren?

Bezug
                        
Bezug
Extrema Sinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Fr 16.11.2012
Autor: WSparrow

Aber wie ich gerade mit Freunden feststellen muss, habe ich doch tatsächlich herausgefunden wie ich es machen kann =)
und zwar habe ich einfach meinen letzten Term, den ich durch umformen ermittelt habe, genommen und den Limes gemacht und der geht gegen -0,5 xD ist ja schonmal ein Anfang =)

Bezug
                                
Bezug
Extrema Sinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Fr 16.11.2012
Autor: reverend

Hallo,

> Aber wie ich gerade mit Freunden feststellen muss, habe ich
> doch tatsächlich herausgefunden wie ich es machen kann =)
> und zwar habe ich einfach meinen letzten Term, den ich
> durch umformen ermittelt habe, genommen und den Limes
> gemacht und der geht gegen -0,5 xD ist ja schonmal ein
> Anfang =)

Wie Du durch Einsetzen in die ursprüngliche Gleichung der Ableitung leicht herausfindest, ist diese Lösung falsch.

Deine Umformung stimmt ja nicht. Du hast den [mm] \arccos [/mm] gliedweise angewandt. Das geht nicht!

Grüße
reverend


Bezug
                        
Bezug
Extrema Sinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Fr 16.11.2012
Autor: reverend

Hallo,

> Ja, das war ich vor ein paar Tagen, aber unsere Dozentin
> hat dasselbe Aufgabenblatt nochmal herausgegeben in
> überarbeiteter Version, weil sie meinte, es sei zu schwer
> und hat dann den Wortlaut der Aufgabe verändert, was ich
> echt seltsam fand :/
> deshalb hab ich sie hier nochmal gestellt, ich dachte, das
> würde einen Unterschied machen.
>  Bedeutet numerisch lösen nun ausprobieren?

Intervallschachtelung ist ein Lösungsweg.
Netter ist z.B. das Newton-Verfahren; es konvergiert schnell.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de