www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Extrema einer EXP-Funktion
Extrema einer EXP-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema einer EXP-Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:31 Mo 05.03.2007
Autor: matter

Aufgabe
Gegeben sei die Funktion [mm] f(x)=(e^{x-2})² [/mm]

Berechnen Sie NST und Extrema !

Die Ableitungen sind ja eigentlich relativ einfach (vorher Binom der Funktion ausgerechnet):

[mm] f(x)=e^{2x} [/mm] - [mm] 4e^{x} [/mm] + 4
[mm] f'(x)=2e^{2x} [/mm] - [mm] 4e^{x} [/mm]
[mm] f''(x)=4e^{2x} [/mm] - [mm] 4e^{x} [/mm]
[mm] f'''(x)=8e^{2x} [/mm] - [mm] 4e^{x} [/mm]

Als Nullstelle erhalte ich:

x= [mm] \bruch{ln4}{2} \approx [/mm] 0,93

Aber bei dem x-Wert des Extremas wirds schon schwierig.

Nach dem Nullsetzen der 1. Ableitung erhalte ich:

[mm] 2e^{2x} [/mm] = [mm] 4e^{x} [/mm]
     4x      =     4x    => und da komm ich nicht weiter. Hab mir die Funktion von meinem TR zeichnen lassen und laut Zeichnung hat sie einen Extremwert bei der Nullstelle.

Irgendwas hab ich wohl falsch gemacht.

mfg
matter

        
Bezug
Extrema einer EXP-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Mo 05.03.2007
Autor: Bastiane

Hallo matter!

> Gegeben sei die Funktion [mm]f(x)=(e^{x-2})²[/mm]
>  
> Berechnen Sie NST und Extrema !
>  Die Ableitungen sind ja eigentlich relativ einfach (vorher
> Binom der Funktion ausgerechnet):
>  
> [mm]f(x)=e^{2x}[/mm] - [mm]4e^{x}[/mm] + 4

Also entweder hast du die Funktion falsch aufgeschrieben, oder falsch verstanden. So wie es oben steht, bedeutet das:

[mm] f(x)=(e^{x-2})*(e^{x-2})=e^{2x-4} [/mm]

>  [mm]f'(x)=2e^{2x}[/mm] - [mm]4e^{x}[/mm]
>  [mm]f''(x)=4e^{2x}[/mm] - [mm]4e^{x}[/mm]
>  [mm]f'''(x)=8e^{2x}[/mm] - [mm]4e^{x}[/mm]

Und dann ist natürlich auch der Rest alles falsch...

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Extrema einer EXP-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Mo 05.03.2007
Autor: matter

Ah na klar, Exponenten addieren. Ich Idiot :D

Ok und dann hat die Funktion auch weder NST noch Extrema, alles klar Danke !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de