Extrema im Mehrdimensionalen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:26 So 25.04.2010 | Autor: | niandis |
Aufgabe | Bestimmen Sie die lokalen Extrema der Funktion f : [mm] \IR^2 [/mm] \ {0} [mm] \rightarrow \IR [/mm] mit
f(x, y) := xy [mm] ln(x^2 [/mm] + [mm] y^2).
[/mm]
Welche der Punkte sind lokale Minima, welche lokale Maxima? |
Hallo,
beim bearbeiten dieser aufgabe bin ich auf 2 Probleme gestoßen.
um die Aufgabe zu lösen habe ich nun erstmal die Jacobi-Matrix und die Hesse Matrix bestimmt:
f' = (y [mm] ln(x^2+y^2) [/mm] + [mm] \bruch{2x^2y}{x^2+y^2} [/mm] , x [mm] ln(x^2+y^2) [/mm] + [mm] \bruch{2y^2x}{x^2+y^2}).
[/mm]
[mm] H_f [/mm] = [mm] \begin{pmatrix} \bruch{2x^3y+6xy^3}{(x^2+y^2)^2} & ln(x^2+y^2) + \bruch{4x^4+2y^4}{(x^2+y^2)^2} \\ ln(x^2+y^2) + \bruch{4x^4+2y^4}{(x^2+y^2)^2} & \bruch{6x^3y+2xy^3}{(x^2+y^2)^2} \end{pmatrix}.
[/mm]
Nun habe ich f'=0 gesetzt. Dabei kam ich zu meinem ersten Problem.
Es ergibts sich, dass
y= 0 v [mm] ln(x^2+y^2) [/mm] + [mm] \bruch{2x^2}{x^2+y^2} [/mm] = 0
und analog
x= 0 v [mm] ln(x^2+y^2) [/mm] + [mm] \bruch{2y^2}{x^2+y^2} [/mm] = 0
bei den jeweils zweiten Termen weiß ich nun nicht wie ich sie nach y bzw. x umstellen soll?!
Mein zweites Problem ergab sich, als ich für denn Fall, dass y=0 (bzw. x=0) weiter gerechtnet habe. In dem Fall kann x (bzw y) nach Definitionsbereich nun nicht auch 0 sein und es ergibt sich, dass x (bzw. [mm] y)=\pm1. [/mm] Wenn ich diese Punkte nun in [mm] H_f [/mm] einsetze ergibt dies die Nullmatrix! Sind dies nun also keine Extrema?
Ich wäre sehr dankbar für ein wenig Hilfe!
Liebe Grüße!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:02 So 25.04.2010 | Autor: | leduart |
Hallo
bei den 0,1 Stellen andelt es sich dann um Sattelpkt.
Die Extrema suchst du, da das ja sehr sym. in x,y ist auf den Winkelhalbierenden, also setz s=x=y und such f'=0 und x=-y
(wie man ohne die Idee die Nst finden sollte weiss ich auch nicht)
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:17 So 25.04.2010 | Autor: | qsxqsx |
Hallo,
Kann man das nicht so machen:
0 = [mm] y*ln(x^{2} [/mm] + [mm] y^{2}) [/mm] + [mm] \bruch{2*x^{2}*y}{x^{2} + y^{2}}
[/mm]
0 = [mm] y*ln(x^{2} [/mm] + [mm] y^{2}) [/mm] * [mm] (x^{2} [/mm] + [mm] y^{2}) [/mm] + [mm] 2*x^{2}*y
[/mm]
Die Exponentielle darauf anwenden:
1 = [mm] (x^{2} [/mm] + [mm] y^{2}) ^{x^{2}*y + y^{3}}*e^{2*x^{2}*y}
[/mm]
und jetzt ist das nur gleich 1 wenn [mm] x^{2}*y [/mm] + [mm] y^{3} [/mm] = 0 und [mm] 2*x^{2}*y [/mm] = 0
oder
[mm] x^{2} [/mm] + [mm] y^{2} [/mm] = 1 und [mm] 2*x^{2}*y [/mm] = 0
Nicht???
Gruss
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:08 Mo 26.04.2010 | Autor: | qsxqsx |
......??? Danke.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:44 Mo 26.04.2010 | Autor: | niandis |
Die Idee hatte ich auch erst aber da müsste ja dann + [mm] e^{2x^2y} [/mm] und nicht [mm] \cdot e^{2x^2y} [/mm] oder?! und dann geht das nicht mehr auf!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:46 Mo 26.04.2010 | Autor: | leduart |
Hallo
1. damit findet man Nst. aber es kann auch
1=$ [mm] (x^{2} [/mm] $ + $ [mm] y^{2}) ^{x^{2}\cdot{}y + y^{3}}\cdot{}e^{2\cdot{}x^{2}\cdot{}y} [/mm] $
$ [mm] (x^{2} [/mm] $ + $ [mm] y^{2}) ^{x^{2}\cdot{}y} [/mm] =1/
[mm] e^{2\cdot{}x^{2}\cdot{}y}
[/mm]
hier ein Bildchen mit allen wichtigen Teilen
[Dateianhang nicht öffentlich]
erstellt mit 3D-XplorMath
Gruss leduart
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Hallo,
ausgehend von $f' = 0$ hast du zwei Gleichungen.
Tipp: Forme sie um, sodass du folgendes erhältst
$x [mm] \ln(x^2 [/mm] + [mm] y^2) [/mm] = - [mm] \frac{2 x y ^2}{x^2 + y^2}$ [/mm]
$y [mm] \ln(x^2 [/mm] + [mm] y^2) [/mm] = [mm] -\frac{2 x^2 y}{x^2 + y^2}$
[/mm]
damit kannst du die zwei Gleichungen einfach durchdividieren und erhältst
[mm] $\frac{x}{y} [/mm] = [mm] \frac{y}{x} \Leftrightarrow x^2 [/mm] = [mm] y^2 \Leftrightarrow [/mm] y = [mm] \pm \lvert [/mm] x [mm] \lvert$.
[/mm]
Also deine Kandidaten liegen genau auf der Winkelhalbierenden, wie oben bereits erwähnt.
In die Hessematrix kannst du dann die verschiedenen Fälle für $x$ und $y$ einsetzen (Vorzeichen). Wobei du frisch gleich für $x$ $y$ verwenden kannst, da $x$ nur in gerade Potenzen vorkommt.
Mit dem Minorenkriterium (see Wiki) kannst dann die Definitheit bestimmen.
Lg,
sonnenblumale
|
|
|
|