www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema in R3
Extrema in R3 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema in R3: rel. simple Frage
Status: (Frage) beantwortet Status 
Datum: 16:47 Mo 25.07.2005
Autor: intuition

Hi,
ich hab folgendes in einem anderen beitrag gelesen.

Zunächst muß die Hessematrix definit sein $ [mm] \left( {f_{xx} \;f_{yy} \; - \;f_{xy}^2 } \right)\;\left( {x_{0} ,\;y_{0} } \right)\; [/mm] > [mm] \;0 [/mm] $

$ [mm] \left( {\begin{array}{\cdot{}{20}c} {f_{xx} \left( {x_{0} ,\;y_{0} } \right)} & {f_{xy} \left( {x_{0} ,\;y_{0} } \right)} \\ {f_{yx} \left( {x_{0} ,\;y_{0} } \right)} & {f_{yy} \left( {x_{0} ,\;y_{0} } \right)} \\ \end{array}} \right) [/mm] $

Um die Art des Extremums festzustellen, werden die Diagonalelemente betrachtet.

Gilt  $ [mm] f_{xx} \left( {x_{0} ,\;y_{0} } \right)\; [/mm] > [mm] \;0,\;f_{yy} \left( {x_{0} ,\;y_{0} } \right)\; [/mm] > [mm] \;0\; [/mm] $  , so liegt ein lokales Minimum vor.

Gilt  $ [mm] f_{xx} \left( {x_{0} ,\;y_{0} } \right)\; [/mm] < [mm] \;0,\;f_{yy} \left( {x_{0} ,\;y_{0} } \right)\; [/mm] < [mm] \;0\; [/mm] $  , so liegt ein lokales Maximum vor.

Ist hingegen   $ [mm] \left( {f_{xx} \;f_{yy} \; - \;f_{xy}^2 } \right)\;\left( {x_{0} ,\;y_{0} } \right)\; [/mm] < [mm] \;0 [/mm] $   , so liegt ein Sattel- oder Jochpunkt vor.


Für  $ [mm] \left( {f_{xx} \;f_{yy} \; - \;f_{xy}^2 } \right)\;\left( {x_{0} ,\;y_{0} } \right)\; [/mm] = [mm] \;0 [/mm] $  kann nicht entschieden werden, ob ein Extremum vorliegt oder nicht.


Meine Frage nun: wie sieht das aus, wenn ich mit der Hessematrix in $ [mm] \IR^3 [/mm] $ entscheiden will ob es sich um positiv oder negativ oder indefinit handelt?

Hoffe dass sich jemand erbarmt mir diese dumme Frage schnell zu beantworten, da es wirklich dringend ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extrema in R3: Hauptminoren
Status: (Antwort) fertig Status 
Datum: 18:25 Mo 25.07.2005
Autor: MatthiasKr

Hallo,

man prüft die definitheit der Hessematrix üblicherweise über die hauptminoren.
Wikipedia erklärt die hauptminoren folgendermaßen:

Die linken oberen k×k-Teilmatrizen [mm] $A_k$ [/mm] der n×n-Matrix A, die durch Streichung der n-k rechtesten Spalten und n-k untersten Zeilen entstehen, haben eine (wenigstens theoretische) Bedeutung für die Feststellung der Definitheit der Matrix A. Die Determinanten [mm] $|A_k|$ [/mm] dieser Teilmatrizen heißen Hauptminoren.

(sorry, aber das in eigene worte fassen, macht keinen spass... ;-))

bei einer 3x3-Matrix ist also das element links oben die erste hauptminore, die determinante der 2x2-Matrix links oben die zweite und die determinate der gesamtmatrix die dritte. (analogie zu deinem vorgehen bei 2x2-Matrizen)

sind alle hauptminoren positiv, so ist die matrix positiv definit. ist die erste hauptminore negativ und wechseln sich danach alle hauptminoren im vorzeichen ab (also +,-,+,-,+,...), dann ist sie negativ definit. gilt statt striktem vorzeichen nur [mm] $\ge$ [/mm] oder [mm] $\le$, [/mm] dann hat man noch semidefinitheit.

Viele Grüße
Matthias

Bezug
        
Bezug
Extrema in R3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Mo 25.07.2005
Autor: intuition

Danke, das hat mir geholfen, auch wenn ich erstmal überlegen musste, was das bedeuten soll.

THX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de