www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Extrema mit NB
Extrema mit NB < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema mit NB: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Do 13.10.2005
Autor: danielinteractive

Hallo zusammen,

ich hab mal wieder eine Extrema-Aufgabe :-) angefangen und hab dazu zwei Fragen. Man soll den Abstand des Punktes [mm]P=(2*\wurzel{2}, \bruch{5}{\wurzel{2}},0) [/mm] zur Oberfläche des Ellipsoids [mm]E:=\{(x,y,z) \in \IR^3 |\ (\bruch{x}{2})^2+y^2+z^2 \leq 1 \}[/mm] bestimmen.
Ansatz: Minimierung von [mm]\parallel P-A \parallel[/mm] mit Nebenbedingung [mm]A \in E[/mm], also der Einfachheit halber Minimierung von
[mm]f: (x,y,z) \to (2\wurzel{2}-x)^2+(\bruch{5}{\wurzel{2}}-y)+z^2[/mm]
mit NB-Funktion
[mm]g:(x,y,z) \to \bruch{x}{2})^2+y^2+z^2 - 1 [/mm].

Jetzt wieder Lagrange:
[mm]\nabla f = \lambda* \nabla g[/mm], es ist also das Gleichungssystem
I.  [mm] \bruch{x}{2})^2+y^2+z^2=1[/mm]
II. [mm] 2*(x-2*\wurzel{2})=\lambda*\bruch{x}{2}[/mm]
III.[mm] 2*(y-\bruch{5}{\wurzel{2}})=\lambda*2y[/mm]
IV.[mm]2z=\lambda*2z[/mm]
zu lösen.

Es folgt z=0, da [mm]\lambda=1[/mm] zu Widerspruch in (III) führt. Aber wie geht es dann weiter ? Ich hab da jetzt schon viel ausprobiert, komme aber auf keine Lösung. :-(

Und die zweite Frage: Maple liefert mit zu dem GS nur eine Lösung! Aber es müssten doch mindestens 2 Lösungen rauskommen, da es ein globales Min. und Max. geben muss (wegen Kompaktheit von [mm]g^{-1}(\{0\})[/mm] und Stetigkeit von f) Das kommt mir komisch vor...

vielen Dank schon mal,
mfg
Daniel

        
Bezug
Extrema mit NB: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:29 Do 13.10.2005
Autor: MathePower

Hallo danielinteractive,

> Hallo zusammen,
>  
> ich hab mal wieder eine Extrema-Aufgabe :-) angefangen und
> hab dazu zwei Fragen. Man soll den Abstand des Punktes
> [mm]P=(2*\wurzel{2}, \bruch{5}{\wurzel{2}},0)[/mm] zur Oberfläche
> des Ellipsoids [mm]E:=\{(x,y,z) \in \IR^3 |\ (\bruch{x}{2})^2+y^2+z^2 \leq 1 \}[/mm]
> bestimmen.
>  Ansatz: Minimierung von [mm]\parallel P-A \parallel[/mm] mit
> Nebenbedingung [mm]A \in E[/mm], also der Einfachheit halber
> Minimierung von
> [mm]f: (x,y,z) \to (2\wurzel{2}-x)^2+(\bruch{5}{\wurzel{2}}-y)+z^2[/mm]
>  
> mit NB-Funktion
>  [mm]g:(x,y,z) \to \bruch{x}{2})^2+y^2+z^2 - 1 [/mm].
>  
> Jetzt wieder Lagrange:
>  [mm]\nabla f = \lambda* \nabla g[/mm], es ist also das
> Gleichungssystem
>  I.  [mm]\bruch{x}{2})^2+y^2+z^2=1[/mm]
>  II. [mm]2*(x-2*\wurzel{2})=\lambda*\bruch{x}{2}[/mm]
>  III.[mm] 2*(y-\bruch{5}{\wurzel{2}})=\lambda*2y[/mm]
>  
> IV.[mm]2z=\lambda*2z[/mm]
>  zu lösen.
>  
> Es folgt z=0, da [mm]\lambda=1[/mm] zu Widerspruch in (III) führt.
> Aber wie geht es dann weiter ? Ich hab da jetzt schon viel
> ausprobiert, komme aber auf keine Lösung. :-(

Löse z.B. Gleichung III nach y und Gleichung II nach x auf. Und setze die x- und y-Werte in Abhängigkeit von [mm]\lambda[/mm] in Gleichung I ein. Dann bekommst Du eine Gleichung für [mm]\lambda[/mm].

>  
> Und die zweite Frage: Maple liefert mit zu dem GS nur eine
> Lösung! Aber es müssten doch mindestens 2 Lösungen
> rauskommen, da es ein globales Min. und Max. geben muss
> (wegen Kompaktheit von [mm]g^{-1}(\{0\})[/mm] und Stetigkeit von f)
> Das kommt mir komisch vor...

Es kommen auch zwei Lösungen heraus.

Gruß
MathePower

Bezug
                
Bezug
Extrema mit NB: ok!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Fr 14.10.2005
Autor: danielinteractive

Hallo Mathepower,

danke für deinen Tipp. Die Gleichung mit Grad 4, die dann entsteht, kann man ja eigentlich auch nicht von Hand lösen (nur eine Lösung erraten), aber so komme ich wenigstens auf die 2. Lösung. Komisch, dass Maple mir die mit "solve..." nicht anzeigen wollte...

mfg
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de