www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Extrema mit Nebenbedingungen
Extrema mit Nebenbedingungen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema mit Nebenbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 07.02.2012
Autor: Nicky-01

Aufgabe
Finden sie das Minimum folgender Funktion:
[mm] f(x,y)=\bruch [/mm] {x^3y+xy-190}{x-y}
unter den Nebenbedingungn
[mm] x^3+x^2-17x=-15 [/mm] und [mm] (x+2)^2=16 [/mm]

bei der Aufgabe ist es doch am sinnvollsten mit der Lagrange-Methode zu rechnen oder?!
und das habe ich versucht ...

also so hab ich angefangen:
L(x,y) = [mm] \bruch{x^3y+xy-190}{x-y} [/mm] + [mm] \lambda_{1} (x^3+x^2-17x+15) [/mm] + [mm] \lambda_{2}((y+2)^2-16) [/mm]
[mm] =\bruch{x^3y+xy-190}{x-y} [/mm] + [mm] \lambda_{1} (x^3+x^2-17x+15) [/mm] + [mm] \lambda_{2}(3x^2+2x-17) [/mm]

dann die partiellen ableitungen:
[mm] \bruch{\delta L}{\delta x} [/mm] = [mm] \bruch{2x^3y-3x^2y^2-y^2+190}{(x-y)^2} [/mm] + [mm] \lambda_{1}(3x^2+2x-17) [/mm]

[mm] \bruch {\delta L}{\delta y} [/mm] = [mm] \bruch{x^4+x^2-2x^3y-2xy+190}{(x-y)^2}+ \lambda_{2}(2y+4) [/mm]

[mm] \bruch{\delta L}{\delta \lambda_{1}}= x^3+x^2-17x+15 [/mm]
[mm] \bruch{\delta L}{\delta \lambda_{2}}= y^2+4y+4 [/mm]

Gradient L [mm] (x,y,\lambda_{1},\lambda_{2}) [/mm] = (0,0,0,0)

I [mm] \bruch{2x^3y-3x^2y^2-y^2+190}{(x-y)^2} [/mm] + [mm] \lambda_{1}(3x^2+2x-17) [/mm] = 0

II [mm] \bruch{x^4+x^2-2x^3y-2xy+190}{(x-y)^2}+ \lambda_{2}(2y+4)= [/mm] 0

III [mm] x^3+x^2-17x+15 [/mm] = 0

IV [mm] y^2+4y+4 [/mm] = 0 -> [mm] y_{1,2}= [/mm] -2 [mm] \pm \wurzel{0} [/mm] -> keine Lösung ...

III durch ausprobieren x=1 und dann Polynom Division
[mm] (x^3+x^2-17x+15):(x-1)= x^2+2x-15 [/mm]

[mm] x^2+2x-15= [/mm] 0
[mm] x_{1,2}= [/mm] -1 [mm] \pm \wurzel{16} [/mm]
      [mm] x_{1}=3 x_{2}=-5 [/mm]

und ab da komme ich nicht weiter ....
gibt es vllt einen anderen weg?
oder ist das was ich gemacht habe überhaupt richtig?


        
Bezug
Extrema mit Nebenbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Di 07.02.2012
Autor: MathePower

Hallo Nicky-01,

> Finden sie das Minimum folgender Funktion:
>  [mm]f(x,y)=\bruch[/mm] {x^3y+xy-190}{x-y}
>  unter den Nebenbedingungn
>  [mm]x^3+x^2-17x=-15[/mm] und [mm](x+2)^2=16[/mm]
>  bei der Aufgabe ist es doch am sinnvollsten mit der
> Lagrange-Methode zu rechnen oder?!


Ja.


>  und das habe ich versucht ...
>  
> also so hab ich angefangen:
>  L(x,y) = [mm]\bruch{x^3y+xy-190}{x-y}[/mm] + [mm]\lambda_{1} (x^3+x^2-17x+15)[/mm]
> + [mm]\lambda_{2}((y+2)^2-16)[/mm]
>  [mm]=\bruch{x^3y+xy-190}{x-y}[/mm] + [mm]\lambda_{1} (x^3+x^2-17x+15)[/mm] +
> [mm]\lambda_{2}(3x^2+2x-17)[/mm]
>  
> dann die partiellen ableitungen:
>  [mm]\bruch{\delta L}{\delta x}[/mm] =
> [mm]\bruch{2x^3y-3x^2y^2-y^2+190}{(x-y)^2}[/mm] +
> [mm]\lambda_{1}(3x^2+2x-17)[/mm]
>


[ok]


> [mm]\bruch {\delta L}{\delta y}[/mm] =
> [mm]\bruch{x^4+x^2-2x^3y-2xy+190}{(x-y)^2}+ \lambda_{2}(2y+4)[/mm]

>


Das musst Du nochmal nachrechnen.

  

> [mm]\bruch{\delta L}{\delta \lambda_{1}}= x^3+x^2-17x+15[/mm]
>  
> [mm]\bruch{\delta L}{\delta \lambda_{2}}= y^2+4y+4[/mm]

>


Hier muss es doch lauten:

[mm]y^2+4y+4\red{-16}=0[/mm]

  

> Gradient L [mm](x,y,\lambda_{1},\lambda_{2})[/mm] = (0,0,0,0)
>  
> I [mm]\bruch{2x^3y-3x^2y^2-y^2+190}{(x-y)^2}[/mm] +
> [mm]\lambda_{1}(3x^2+2x-17)[/mm] = 0
>  
> II [mm]\bruch{x^4+x^2-2x^3y-2xy+190}{(x-y)^2}+ \lambda_{2}(2y+4)=[/mm]
> 0
>  
> III [mm]x^3+x^2-17x+15[/mm] = 0
>  
> IV [mm]y^2+4y+4[/mm] = 0 -> [mm]y_{1,2}=[/mm] -2 [mm]\pm \wurzel{0}[/mm] -> keine
> Lösung ...
>  
> III durch ausprobieren x=1 und dann Polynom Division
> [mm](x^3+x^2-17x+15):(x-1)= x^2+2x-15[/mm]
>
> [mm]x^2+2x-15=[/mm] 0
> [mm]x_{1,2}=[/mm] -1 [mm]\pm \wurzel{16}[/mm]
>        [mm]x_{1}=3 x_{2}=-5[/mm]
>
> und ab da komme ich nicht weiter ....
>  gibt es vllt einen anderen weg?
>  oder ist das was ich gemacht habe überhaupt richtig?
>  


Siehe oben.


Gruss
MathePower

Bezug
                
Bezug
Extrema mit Nebenbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 07.02.2012
Autor: Nicky-01

ahh ok, die -16 habe ich total übersehen ...
dann bekomme ich für [mm] y_{1}=2 [/mm] und [mm] y_{2}=-6 [/mm] raus ...

ach ja ok, dann
muss die [mm] \bruch{\delta L}{\delta y} [/mm] = [mm] \bruch{x^4+x^2-190}{(x-y)^2}+\lambda_{2}(2y+4) [/mm]
oder wieder ein fehler drin?


wie mache ich denn dann weiter?!
also ich muss ja x und y einsetzen damit ich [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] rauskriegen kann,
aber ist es denn dann egal welches x und y ich einsetze?!
denn ich hab ja jetzt [mm] x_{1}=1, x_{2}= [/mm] 3 und [mm] x_{3}=-5 [/mm]
und [mm] y_{1}=2 [/mm] und [mm] y_{2}=-6 [/mm] raus ...


Bezug
                        
Bezug
Extrema mit Nebenbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Mi 08.02.2012
Autor: MathePower

Hallo Nicky.-01,

> ahh ok, die -16 habe ich total übersehen ...
>  dann bekomme ich für [mm]y_{1}=2[/mm] und [mm]y_{2}=-6[/mm] raus ...
>  
> ach ja ok, dann
> muss die [mm]\bruch{\delta L}{\delta y}[/mm] =
> [mm]\bruch{x^4+x^2-190}{(x-y)^2}+\lambda_{2}(2y+4)[/mm]
> oder wieder ein fehler drin?
>  


Nein, kein Fehler.


> wie mache ich denn dann weiter?!
>  also ich muss ja x und y einsetzen damit ich [mm]\lambda_{1}[/mm]
> und [mm]\lambda_{2}[/mm] rauskriegen kann,
>  aber ist es denn dann egal welches x und y ich einsetze?!
>  denn ich hab ja jetzt [mm]x_{1}=1, x_{2}=[/mm] 3 und [mm]x_{3}=-5[/mm]
>  und [mm]y_{1}=2[/mm] und [mm]y_{2}=-6[/mm] raus ...
>  


Hier sind alle Paare [mm]\left(x_{i},y_{j}\right)[/mm] einzusetzen.


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de