www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Extremal- u. Wendepunkte
Extremal- u. Wendepunkte < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremal- u. Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Di 26.02.2008
Autor: Mathefreak90

Aufgabe
Führen Sie eine Kurvendiskussion von f durch und zeichnen Sie den Graphen über dem angegebenen Intervall.

a) f(x) = x²-8x+15;   2 [mm] \le [/mm] x [mm] \le [/mm] 6

Meine Frage ist, wie muss ich vorgehen um solch eine Aufgabe zu lösen? Es geht mir jedoch hier nur um die Berechnung der Extremal- und Wendepunkte!
Ich verstehe das mit dem:

Kriterium 1: Berechung von f''(xE)
f''(xE) < 0   => maximum
f''(xE) > 0   => minimum
f''(xE) = 0   => keine Aussage

Kriterium 2: Vorzeichenwechsel von f' bei xE
Vorzeichenwechsel von f' bei xE: +/-    =>  maximum
Vorzeichenwechsel von f' bei xE: -/+    =>  minimum




und das mit den Wendepunkten ebenso wenig...

Kriterium 1: Berechung von f'''(xW)
f'''(xW) < 0   => Wendepunkt (L-r)
f'''(xW) > 0   => Wendepunkt (R-l)
f'''(xW) = 0   => keine Aussage

Kriterium 2: Vorzeichenwechsel von f'' bei xE
Vorzeichenwechsel von f'' bei xW: +/-    =>  L-r-Wp
Vorzeichenwechsel von f'' bei xW: -/+    =>  R-l-Wp


Wäre nett, wenn mir das jemand, so gut wie es eben über dieses Forum möglich ist, erklären kann.. ich muss diese Aufgabe rechnen, komme aber absolut nicht weiter :(

Viele liebe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremal- u. Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Di 26.02.2008
Autor: Bastiane

Hallo Mathefreak90!

> Führen Sie eine Kurvendiskussion von f durch und zeichnen
> Sie den Graphen über dem angegebenen Intervall.
>  
> a) f(x) = x²-8x+15;   2 [mm]\le[/mm] x [mm]\le[/mm] 6
>  Meine Frage ist, wie muss ich vorgehen um solch eine
> Aufgabe zu lösen? Es geht mir jedoch hier nur um die
> Berechnung der Extremal- und Wendepunkte!

Also was denn jetzt? Willst du wissen, wie man allgemein vorgeht oder geht es dir nur um die Extremal- und Wendepunkte? Zu ersterem solltet ihr eine Art Liste haben, was ihr alles untersuchen sollt, bei uns fing das an mit dem Definitions- und Wertebereich, dann mit Symmetrie und Schnittpunkten mit den Achsen, usw.. Die meisten Sachen davon sind glaube ich Mittelstufenstoff, nur fasst man es bei einer Kurvendiskussion halt alles zusammen.

>  Ich verstehe das mit dem:
>  
> Kriterium 1: Berechung von f''(xE)
>  f''(xE) < 0   => maximum

>  f''(xE) > 0   => minimum

>  f''(xE) = 0   => keine Aussage

Das ist eigentlich ganz einfach. Zuerst musst du "mögliche" Extrempunkte herausfinden, manchmal haben die auch noch einen Namen, der fällt mir aber gerade nicht ein, da das bei uns keinen expliziten Namen hatte... Mögliche Extrempunkte sind die, bei denen die 1. Ableitung =0 ist, denn das ist - bekanntermaßen - eine notwendige Bedingung. Wenn also die Ableitung an einer Stellen nicht =0 ist, kann dort gar kein Extrempunkt sein. Du musst also zuerst f'(x) berechnen und =0 setzen.

Wenn du das hast, weißt du aber erstens noch nicht, ob das wirklich ein Extrempunkt ist, denn auch bei Sattelpunkten ist die 1. Ableitung =0, und zweitens, selbst wenn es ein Extrempunkt ist, weißt du noch nicht, ob es ein Hoch- oder ein Tiefpunkt ist. Und das musst du nun noch herausfinden. Du musst also die zweite Ableitung berechnen und gucken, ob sie an den "möglichen" Extremstellen >0, <0 oder =0 ist. Ist sie dort <0, so hast du einen Hochpunkt, ist sie >0, so hast du einen Tiefpunkt, ist sie gleich 0, so müsstest du noch die nächsten Ableitungen betrachten um eine Aussage machen zu können, das macht man aber in der Schule glaube ich selten.

> Kriterium 2: Vorzeichenwechsel von f' bei xE
>  Vorzeichenwechsel von f' bei xE: +/-    =>  maximum
>  Vorzeichenwechsel von f' bei xE: -/+    =>  minimum

Manchmal ist es sehr komplex, die zweite Ableitung zu berechnen, und man bedient sich lieber des Vorzeichenwechselkriteriums. Du musst dazu die erste Ableitung in der Nähe deiner "möglichen" Extrempunkte betrachten. Das heißt, du setzt Zahlen ein kleines bisschen größer und ein kleines bisschen kleiner als der mögliche Extrempunkt ein, wenn das erste negativ und das zweite positiv ist, hast du einen Wechseln von - zu +, also einen Tiefpunkt, andernfalls einen Hochpunkt.

Bei den Wendepunkten ist es eigentlich ganz genauso. Verstehst du es jetzt?

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de