www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Extrempunktsbestimmmung
Extrempunktsbestimmmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunktsbestimmmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 So 21.03.2010
Autor: DarkJiN

Aufgabe
Gegeben ist die Funktion f(x) = [mm] x^4-2ax^3+6x^2-5 [/mm]

b) Für welche Werte von a hat die Funktionf genau einen Extrempunkt [drei Extrempunkte] Warum kann für keinen Wert von a die Funktionf genau zwei Extrempunkte haben?

Wie genau lös ich sowas..?
ich hab mal einen Lösungsansatz.

f´(x)= [mm] 4x^3-6ax^2+12x [/mm]

eine Nullstelle ist 0 weil wir ja keine konstante hinten haben.
Könnte jetzt ausklammern oder einfach durch x mit Polynomdivision teilen.
Bei der Polynomdivision kommt

[mm] 4x^2-6ax+12 [/mm]
raus.

das setz ich gleich 0 und dividiere durch 4 um das in die pq-Formel einsetzen zu können.


[mm] x_{1/2} [/mm] = [mm] \bruch{1,5a}{2} [/mm] +/- [mm] \wurzel{(-\bruch{1,5a}{2})^2-3} [/mm]



D= [mm] (-0.75a)^2-3 [/mm]
D= 0,5625a-3 > 0


aber wie komm ich auf den genauen Wert von a?

        
Bezug
Extrempunktsbestimmmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 So 21.03.2010
Autor: angela.h.b.


> Gegeben ist die Funktion f(x) = [mm]x^4-2ax^3+6x^2-5[/mm]
>  
> b) Für welche Werte von a hat die Funktionf genau einen
> Extrempunkt [drei Extrempunkte] Warum kann für keinen Wert
> von a die Funktionf genau zwei Extrempunkte haben?
>  Wie genau lös ich sowas..?
>  ich hab mal einen Lösungsansatz.
>  
> f´(x)= [mm]4x^3-6ax^2+12x[/mm]
>  
> eine Nullstelle ist 0 weil wir ja keine konstante hinten
> haben.
>  Könnte jetzt ausklammern oder einfach durch x mit
> Polynomdivision teilen.
>  Bei der Polynomdivision kommt
>  
> [mm]4x^2-6ax+12[/mm]
> raus.
>  
> das setz ich gleich 0 und dividiere durch 4 um das in die
> pq-Formel einsetzen zu können.
>  
>
> [mm]x_{1/2}[/mm] = [mm]\bruch{1,5a}{2}[/mm] +/-
> [mm]\wurzel{(-\bruch{1,5a}{2})^2-3}[/mm]
>  
>
>
> D= [mm](-0.75a)^2-3[/mm]
>  D= 0,5625a-3 > 0

>  
>
> aber wie komm ich auf den genauen Wert von a?

Hallo,

der "genaue Wert" kann auch darin bestehen, daß Du sagst: für -123<x<456 gilt diesunddas.

A.
Für [mm] -\bruch{1,5a}{2})^2-3<0 [/mm] (also für a> ... ) gibt es neben x=0 keine Stelle, an der die Funktion eine waagerechte Tangente hat.
Untersuche also die Stelle x=0 für diesen Fall darauf, ob es eine Extremstelle ist.

B.
Für [mm] -\bruch{1,5a}{2})^2-3=0 [/mm] (also für a= ... ) gibt es neben x=0 eine Stelle, an der die Funktion eine waagerechte Tangente hat.
Untersuche nun die fraglichen Stellen darauf, ob es Extremstellen sind.

C.
Für [mm] -\bruch{1,5a}{2})^2-3>0 [/mm] (also für a> ... ) gibt es  neben x=0 zwei Stellen, an der die Funktion eine waagerechte Tangente hat.
Untersuche, ob es sich um Extremstellen handelt.

Gruß v. Angela

Bezug
                
Bezug
Extrempunktsbestimmmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 So 21.03.2010
Autor: DarkJiN

und wie untersuch ich die Stelle x=0?

ich meine das a fehlt doch.

x=0 ist aufjedenfall eine Nullstelle von f'(x), soviel ist klar.
Also ist x=0 eine mögliche Extremstelle von f.

kannst du mir  A vllt vorrechnen?

> A.
> Für [mm]-\bruch{1,5a}{2})^2-3<0[/mm] (also für a> ... ) gibt es
> neben x=0 keine Stelle, an der die Funktion eine
> waagerechte Tangente hat.
>  Untersuche also die Stelle x=0 für diesen Fall darauf, ob
> es eine Extremstelle ist.
>  


Bezug
                        
Bezug
Extrempunktsbestimmmung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 So 21.03.2010
Autor: Steffi21

Hallo,

[mm] f(x)=x^{4}-2*a*x^{3}+6*x^{2}-5 [/mm]

[mm] f'(x)=4*x^{3}-6*a*x^{2}+12*x [/mm]

[mm] f'(x)=x*(4*x^{2}-6*a*x+12) [/mm]

[mm] x_1=0 [/mm] ist eine Extremstelle

du untersuchst [mm] x_2_3=0,75*a\pm\wurzel{0,5625*a^{2}-3}, [/mm]

für [mm] 0,5625*a^{2}-3<0 [/mm] kannst du keine relle Wurzel ziehen,

für [mm] a^{2}<\bruch{16}{3} [/mm] gibt es also nur eine Extremstelle,

für [mm] a^{2}>\bruch{16}{3} [/mm] gibt es drei Extremstellen

für [mm] a^{2}=\bruch{16}{3} [/mm] gibt es auch nur eine Extremstelle, untersuche deine Funktion mal für diesen Fall, Stichwort Sattelpunkt

Steffi

Bezug
                                
Bezug
Extrempunktsbestimmmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 21.03.2010
Autor: DarkJiN

wie kommst du auf [mm] \bruch{16}{3}= a^2 [/mm]   ?



woher kommen die [mm] \bruch{16}{3}[/mm]

Bezug
                                        
Bezug
Extrempunktsbestimmmung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 So 21.03.2010
Autor: Steffi21

Hallo,

unter der Wurzel steht

[mm] (0,75*a)^{2}-3 [/mm]

[mm] (\bruch{3}{4}*a)^{2}-3 [/mm]

[mm] \bruch{9}{16}a^{2}-3 [/mm]

jetzt der Fall gleich Null

[mm] \bruch{9}{16}a^{2}-3=0 [/mm]

[mm] \bruch{9}{16}a^{2}=3 [/mm]

[mm] a^{2}=\bruch{48}{9}=\bruch{16}{3} [/mm]

Steffi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de